Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ d + (1 - d)tanh({(\frac{1}{(x + s)})}^{c})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - dtanh({\frac{1}{(x + s)}}^{c}) + tanh({\frac{1}{(x + s)}}^{c}) + d\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - dtanh({\frac{1}{(x + s)}}^{c}) + tanh({\frac{1}{(x + s)}}^{c}) + d\right)}{dx}\\=& - dsech^{2}({\frac{1}{(x + s)}}^{c})({\frac{1}{(x + s)}}^{c}((0)ln(\frac{1}{(x + s)}) + \frac{(c)((\frac{-(1 + 0)}{(x + s)^{2}}))}{(\frac{1}{(x + s)})})) + sech^{2}({\frac{1}{(x + s)}}^{c})({\frac{1}{(x + s)}}^{c}((0)ln(\frac{1}{(x + s)}) + \frac{(c)((\frac{-(1 + 0)}{(x + s)^{2}}))}{(\frac{1}{(x + s)})})) + 0\\=&\frac{dc{\frac{1}{(x + s)}}^{c}sech^{2}({\frac{1}{(x + s)}}^{c})}{(x + s)} - \frac{c{\frac{1}{(x + s)}}^{c}sech^{2}({\frac{1}{(x + s)}}^{c})}{(x + s)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return