There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {({{e}^{2}}^{x} + 1)}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e^{2}}^{(3(x))} + 3{e^{2}}^{(2(x))} + 3{e^{2}}^{x} + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e^{2}}^{(3(x))} + 3{e^{2}}^{(2(x))} + 3{e^{2}}^{x} + 1\right)}{dx}\\=&({e^{2}}^{(3(x))}((3(1))ln(e^{2}) + \frac{(3(x))(2e*0)}{(e^{2})})) + 3({e^{2}}^{(2(x))}((2(1))ln(e^{2}) + \frac{(2(x))(2e*0)}{(e^{2})})) + 3({e^{2}}^{x}((1)ln(e^{2}) + \frac{(x)(2e*0)}{(e^{2})})) + 0\\=&6{e^{2}}^{(3x)} + 12{e^{2}}^{(2x)} + 6{e^{2}}^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !