There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(x + 3)}{e^{x}} - \frac{a{x}^{2}}{2} + 2x - 3\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x}{e^{x}} + \frac{3}{e^{x}} - \frac{1}{2}ax^{2} + 2x - 3\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x}{e^{x}} + \frac{3}{e^{x}} - \frac{1}{2}ax^{2} + 2x - 3\right)}{dx}\\=&\frac{1}{e^{x}} + \frac{x*-e^{x}}{e^{{x}*{2}}} + \frac{3*-e^{x}}{e^{{x}*{2}}} - \frac{1}{2}a*2x + 2 + 0\\=&\frac{-2}{e^{x}} - \frac{x}{e^{x}} - ax + 2\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !