There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{a}x(arccos(b)x + bsin(b)x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}{e}^{a}arccos(b) + bx^{2}{e}^{a}sin(b)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}{e}^{a}arccos(b) + bx^{2}{e}^{a}sin(b)\right)}{dx}\\=&2x{e}^{a}arccos(b) + x^{2}({e}^{a}((0)ln(e) + \frac{(a)(0)}{(e)}))arccos(b) + x^{2}{e}^{a}(\frac{-(0)}{((1 - (b)^{2})^{\frac{1}{2}})}) + b*2x{e}^{a}sin(b) + bx^{2}({e}^{a}((0)ln(e) + \frac{(a)(0)}{(e)}))sin(b) + bx^{2}{e}^{a}cos(b)*0\\=&2x{e}^{a}arccos(b) + 2bx{e}^{a}sin(b)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !