There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({x}^{35})({b}^{(35x)})}{({k}^{(x + 1)})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{35}{b}^{(35x)}{k}^{(-x - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{35}{b}^{(35x)}{k}^{(-x - 1)}\right)}{dx}\\=&35x^{34}{b}^{(35x)}{k}^{(-x - 1)} + x^{35}({b}^{(35x)}((35)ln(b) + \frac{(35x)(0)}{(b)})){k}^{(-x - 1)} + x^{35}{b}^{(35x)}({k}^{(-x - 1)}((-1 + 0)ln(k) + \frac{(-x - 1)(0)}{(k)}))\\=&35x^{35}{b}^{(35x)}{k}^{(-x - 1)}ln(b) - x^{35}{k}^{(-x - 1)}{b}^{(35x)}ln(k) + 35x^{34}{b}^{(35x)}{k}^{(-x - 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !