There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ xxxxx + 5xsin(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 5xsin(x) + x^{5}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 5xsin(x) + x^{5}\right)}{dx}\\=&5sin(x) + 5xcos(x) + 5x^{4}\\=&5sin(x) + 5xcos(x) + 5x^{4}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 5sin(x) + 5xcos(x) + 5x^{4}\right)}{dx}\\=&5cos(x) + 5cos(x) + 5x*-sin(x) + 5*4x^{3}\\=&10cos(x) - 5xsin(x) + 20x^{3}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 10cos(x) - 5xsin(x) + 20x^{3}\right)}{dx}\\=&10*-sin(x) - 5sin(x) - 5xcos(x) + 20*3x^{2}\\=& - 15sin(x) - 5xcos(x) + 60x^{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !