There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{ln(3x + 2)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{ln(3x + 2)}\right)}{dx}\\=&({x}^{ln(3x + 2)}((\frac{(3 + 0)}{(3x + 2)})ln(x) + \frac{(ln(3x + 2))(1)}{(x)}))\\=&\frac{3{x}^{ln(3x + 2)}ln(x)}{(3x + 2)} + \frac{{x}^{ln(3x + 2)}ln(3x + 2)}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !