Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ log_{2}^{x + 10} - {(\frac{(sqrt(2))}{2})}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = log_{2}^{x + 10} - (\frac{1}{2}sqrt(2))^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{2}^{x + 10} - (\frac{1}{2}sqrt(2))^{x}\right)}{dx}\\=&(\frac{(\frac{(1 + 0)}{(x + 10)} - \frac{(0)log_{2}^{x + 10}}{(2)})}{(ln(2))}) - ((\frac{1}{2}sqrt(2))^{x}((1)ln(\frac{1}{2}sqrt(2)) + \frac{(x)(\frac{1}{2}*0*\frac{1}{2}*2^{\frac{1}{2}})}{(\frac{1}{2}sqrt(2))}))\\=&\frac{1}{(x + 10)ln(2)} - (\frac{1}{2}sqrt(2))^{x}ln(\frac{1}{2}sqrt(2))\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return