There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (a{x}^{3} + b{x}^{2} + cx + d)(x - n)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ax^{4} - anx^{3} + bx^{3} - bnx^{2} + cx^{2} - cnx + dx - dn\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ax^{4} - anx^{3} + bx^{3} - bnx^{2} + cx^{2} - cnx + dx - dn\right)}{dx}\\=&a*4x^{3} - an*3x^{2} + b*3x^{2} - bn*2x + c*2x - cn + d + 0\\=&4ax^{3} - 3anx^{2} + 3bx^{2} - 2bnx + 2cx - cn + d\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !