Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(\frac{x}{(1 - x)})}^{\frac{1}{5}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{\frac{1}{5}}}{(-x + 1)^{\frac{1}{5}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{\frac{1}{5}}}{(-x + 1)^{\frac{1}{5}}}\right)}{dx}\\=&(\frac{\frac{-1}{5}(-1 + 0)}{(-x + 1)^{\frac{6}{5}}})x^{\frac{1}{5}} + \frac{\frac{1}{5}}{(-x + 1)^{\frac{1}{5}}x^{\frac{4}{5}}}\\=&\frac{x^{\frac{1}{5}}}{5(-x + 1)^{\frac{6}{5}}} + \frac{1}{5(-x + 1)^{\frac{1}{5}}x^{\frac{4}{5}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return