There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln({(sin(x))}^{2} + {e}^{x}) - x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(sin^{2}(x) + {e}^{x}) - x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(sin^{2}(x) + {e}^{x}) - x\right)}{dx}\\=&\frac{(2sin(x)cos(x) + ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{(sin^{2}(x) + {e}^{x})} - 1\\=&\frac{2sin(x)cos(x)}{(sin^{2}(x) + {e}^{x})} + \frac{{e}^{x}}{(sin^{2}(x) + {e}^{x})} - 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !