There are 1 questions in this calculation: for each question, the 1 derivative of q is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{d(500 - 12q + \frac{3}{5}{q}^{2})(q)}{d}\ with\ respect\ to\ q:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - 12q^{2} + \frac{3}{5}q^{3} + 500q\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - 12q^{2} + \frac{3}{5}q^{3} + 500q\right)}{dq}\\=& - 12*2q + \frac{3}{5}*3q^{2} + 500\\=& - 24q + \frac{9q^{2}}{5} + 500\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !