There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{ax}{({({x}^{2} + {b}^{2})}^{(\frac{(m + 1)}{2})})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ax(x^{2} + b^{2})^{(\frac{-1}{2}m - \frac{1}{2})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ax(x^{2} + b^{2})^{(\frac{-1}{2}m - \frac{1}{2})}\right)}{dx}\\=&a(x^{2} + b^{2})^{(\frac{-1}{2}m - \frac{1}{2})} + ax((x^{2} + b^{2})^{(\frac{-1}{2}m - \frac{1}{2})}((0 + 0)ln(x^{2} + b^{2}) + \frac{(\frac{-1}{2}m - \frac{1}{2})(2x + 0)}{(x^{2} + b^{2})}))\\=&a(x^{2} + b^{2})^{(\frac{-1}{2}m - \frac{1}{2})} - \frac{amx^{2}(x^{2} + b^{2})^{(\frac{-1}{2}m - \frac{1}{2})}}{(x^{2} + b^{2})} - \frac{ax^{2}(x^{2} + b^{2})^{(\frac{-1}{2}m - \frac{1}{2})}}{(x^{2} + b^{2})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !