Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ log_{a}^{{e}^{({x}^{3} + 2x)}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = log_{a}^{{e}^{(x^{3} + 2x)}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{a}^{{e}^{(x^{3} + 2x)}}\right)}{dx}\\=&(\frac{(\frac{(({e}^{(x^{3} + 2x)}((3x^{2} + 2)ln(e) + \frac{(x^{3} + 2x)(0)}{(e)})))}{({e}^{(x^{3} + 2x)})} - \frac{(0)log_{a}^{{e}^{(x^{3} + 2x)}}}{(a)})}{(ln(a))})\\=&\frac{3x^{2}{e}^{(2x^{3} + 4x)}}{ln(a)} + \frac{2{e}^{(2x^{3} + 4x)}}{ln(a)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return