There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(4x)}^{(x - 1)} - {(4x - 1)}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (4x)^{(x - 1)} - (4x - 1)^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (4x)^{(x - 1)} - (4x - 1)^{x}\right)}{dx}\\=&((4x)^{(x - 1)}((1 + 0)ln(4x) + \frac{(x - 1)(4)}{(4x)})) - ((4x - 1)^{x}((1)ln(4x - 1) + \frac{(x)(4 + 0)}{(4x - 1)}))\\=&(4x)^{(x - 1)}ln(4x) - (4x - 1)^{x}ln(4x - 1) - \frac{(4x)^{(x - 1)}}{x} + (4x)^{(x - 1)} - \frac{4x(4x - 1)^{x}}{(4x - 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !