There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (a - d){\frac{1}{(1 + \frac{x}{c})}}^{2} + d\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{a}{(\frac{x}{c} + 1)^{2}} - \frac{d}{(\frac{x}{c} + 1)^{2}} + d\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{a}{(\frac{x}{c} + 1)^{2}} - \frac{d}{(\frac{x}{c} + 1)^{2}} + d\right)}{dx}\\=&(\frac{-2(\frac{1}{c} + 0)}{(\frac{x}{c} + 1)^{3}})a + 0 - (\frac{-2(\frac{1}{c} + 0)}{(\frac{x}{c} + 1)^{3}})d + 0 + 0\\=&\frac{-2a}{(\frac{x}{c} + 1)^{3}c} + \frac{2d}{(\frac{x}{c} + 1)^{3}c}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !