There are 1 questions in this calculation: for each question, the 4 derivative of o is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ (-20x - 2{x}^{(3 + 4{x}^{5})}){\frac{1}{(2 + {x}^{2})}}^{4}\ with\ respect\ to\ o:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-20x}{(x^{2} + 2)^{4}} - \frac{2{x}^{(4x^{5} + 3)}}{(x^{2} + 2)^{4}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-20x}{(x^{2} + 2)^{4}} - \frac{2{x}^{(4x^{5} + 3)}}{(x^{2} + 2)^{4}}\right)}{do}\\=&-20(\frac{-4(0 + 0)}{(x^{2} + 2)^{5}})x + 0 - 2(\frac{-4(0 + 0)}{(x^{2} + 2)^{5}}){x}^{(4x^{5} + 3)} - \frac{2({x}^{(4x^{5} + 3)}((0 + 0)ln(x) + \frac{(4x^{5} + 3)(0)}{(x)}))}{(x^{2} + 2)^{4}}\\=& - 0\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - 0\right)}{do}\\=& - 0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( - 0\right)}{do}\\=& - 0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( - 0\right)}{do}\\=& - 0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !