Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(sin(x))}^{2}{3}^{({x}^{2} + 7x - 5)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {3}^{(x^{2} + 7x - 5)}sin^{2}(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {3}^{(x^{2} + 7x - 5)}sin^{2}(x)\right)}{dx}\\=&({3}^{(x^{2} + 7x - 5)}((2x + 7 + 0)ln(3) + \frac{(x^{2} + 7x - 5)(0)}{(3)}))sin^{2}(x) + {3}^{(x^{2} + 7x - 5)}*2sin(x)cos(x)\\=&2x{3}^{(x^{2} + 7x - 5)}ln(3)sin^{2}(x) + 7 * {3}^{(x^{2} + 7x - 5)}ln(3)sin^{2}(x) + 2 * {3}^{(x^{2} + 7x - 5)}sin(x)cos(x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return