There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ -2(1 - cos(x))simx\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2simxcos(x) - 2simx\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2simxcos(x) - 2simx\right)}{dx}\\=&2simcos(x) + 2simx*-sin(x) - 2sim\\=&2simcos(x) - 2simxsin(x) - 2sim\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2simcos(x) - 2simxsin(x) - 2sim\right)}{dx}\\=&2sim*-sin(x) - 2simsin(x) - 2simxcos(x) + 0\\=& - 4simsin(x) - 2simxcos(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( - 4simsin(x) - 2simxcos(x)\right)}{dx}\\=& - 4simcos(x) - 2simcos(x) - 2simx*-sin(x)\\=& - 6simcos(x) + 2simxsin(x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( - 6simcos(x) + 2simxsin(x)\right)}{dx}\\=& - 6sim*-sin(x) + 2simsin(x) + 2simxcos(x)\\=&8simsin(x) + 2simxcos(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !