Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of p is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (p - w){(a - bp + nk)}^{2}\ with\ respect\ to\ p:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = a^{2}p - 2abp^{2} + 2ankp + b^{2}p^{3} - 2bnkp^{2} + n^{2}k^{2}p + 2wabp - 2wank - wa^{2} - wb^{2}p^{2} + 2wbnkp - wn^{2}k^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( a^{2}p - 2abp^{2} + 2ankp + b^{2}p^{3} - 2bnkp^{2} + n^{2}k^{2}p + 2wabp - 2wank - wa^{2} - wb^{2}p^{2} + 2wbnkp - wn^{2}k^{2}\right)}{dp}\\=&a^{2} - 2ab*2p + 2ank + b^{2}*3p^{2} - 2bnk*2p + n^{2}k^{2} + 2wab + 0 + 0 - wb^{2}*2p + 2wbnk + 0\\=&2ank - 4abp + a^{2} + 3b^{2}p^{2} - 4bnkp + n^{2}k^{2} + 2wab - 2wb^{2}p + 2wbnk\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return