There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ tan({e}^{log_{2}^{x}})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( tan({e}^{log_{2}^{x}})\right)}{dx}\\=&sec^{2}({e}^{log_{2}^{x}})(({e}^{log_{2}^{x}}(((\frac{(\frac{(1)}{(x)} - \frac{(0)log_{2}^{x}}{(2)})}{(ln(2))}))ln(e) + \frac{(log_{2}^{x})(0)}{(e)})))\\=&\frac{{e}^{log_{2}^{x}}sec^{2}({e}^{log_{2}^{x}})}{xln(2)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !