Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {log_{(a - 1)}^{a - 1}}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {log_{a - 1}^{a - 1}}^{x}\right)}{dx}\\=&({log_{a - 1}^{a - 1}}^{x}((1)ln(log_{a - 1}^{a - 1}) + \frac{(x)((\frac{(\frac{(0 + 0)}{(a - 1)} - \frac{(0 + 0)log_{a - 1}^{a - 1}}{(a - 1)})}{(ln(a - 1))}))}{(log_{a - 1}^{a - 1})}))\\=&{log_{a - 1}^{a - 1}}^{x}ln(log_{a - 1}^{a - 1})\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return