There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(e^{1}bp(t) + e^{2}b*2p*2(t))}{(1 + bp(t) + b*2p*2(t))}\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{bpte^{1}}{(5bpt + 1)} + \frac{4bpte^{2}}{(5bpt + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{bpte^{1}}{(5bpt + 1)} + \frac{4bpte^{2}}{(5bpt + 1)}\right)}{dt}\\=&(\frac{-(5bp + 0)}{(5bpt + 1)^{2}})bpte^{1} + \frac{bpe^{1}}{(5bpt + 1)} + \frac{bpte^{1}*0}{(5bpt + 1)} + 4(\frac{-(5bp + 0)}{(5bpt + 1)^{2}})bpte^{2} + \frac{4bpe^{2}}{(5bpt + 1)} + \frac{4bpte^{2}*0}{(5bpt + 1)}\\=&\frac{-5b^{2}p^{2}te^{1}}{(5bpt + 1)^{2}} + \frac{bpe^{1}}{(5bpt + 1)} - \frac{20b^{2}p^{2}te^{2}}{(5bpt + 1)^{2}} + \frac{4bpe^{2}}{(5bpt + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !