There are 1 questions in this calculation: for each question, the 1 derivative of a is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(\frac{a(5 - a)}{2})}^{2} + {(\frac{(5 - 2a)}{3})}^{3}\ with\ respect\ to\ a:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{4}a^{4} - \frac{151}{54}a^{3} + \frac{305}{36}a^{2} - \frac{50}{9}a + \frac{125}{27}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{4}a^{4} - \frac{151}{54}a^{3} + \frac{305}{36}a^{2} - \frac{50}{9}a + \frac{125}{27}\right)}{da}\\=&\frac{1}{4}*4a^{3} - \frac{151}{54}*3a^{2} + \frac{305}{36}*2a - \frac{50}{9} + 0\\=&a^{3} - \frac{151a^{2}}{18} + \frac{305a}{18} - \frac{50}{9}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !