Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{(x - 1)}^{e^{π}}}{4} + arctan(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{4}(x - 1)^{e^{π}} + arctan(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{4}(x - 1)^{e^{π}} + arctan(x)\right)}{dx}\\=&\frac{1}{4}((x - 1)^{e^{π}}((e^{π}*0)ln(x - 1) + \frac{(e^{π})(1 + 0)}{(x - 1)})) + (\frac{(1)}{(1 + (x)^{2})})\\=&\frac{(x - 1)^{e^{π}}e^{π}}{4(x - 1)} + \frac{1}{(x^{2} + 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return