There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ A + Be^{(-2){(\frac{(x - C)}{D})}^{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = A + Be^{\frac{-2x^{2}}{D^{2}} + \frac{4Cx}{D^{2}} - \frac{2C^{2}}{D^{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( A + Be^{\frac{-2x^{2}}{D^{2}} + \frac{4Cx}{D^{2}} - \frac{2C^{2}}{D^{2}}}\right)}{dx}\\=&0 + Be^{\frac{-2x^{2}}{D^{2}} + \frac{4Cx}{D^{2}} - \frac{2C^{2}}{D^{2}}}(\frac{-2*2x}{D^{2}} + \frac{4C}{D^{2}} + 0)\\=&\frac{-4Bxe^{\frac{-2x^{2}}{D^{2}} + \frac{4Cx}{D^{2}} - \frac{2C^{2}}{D^{2}}}}{D^{2}} + \frac{4BCe^{\frac{-2x^{2}}{D^{2}} + \frac{4Cx}{D^{2}} - \frac{2C^{2}}{D^{2}}}}{D^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !