There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {({x}^{2} + 1)}^{π} + {π}^{sin(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (x^{2} + 1)^{π} + {π}^{sin(x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (x^{2} + 1)^{π} + {π}^{sin(x)}\right)}{dx}\\=&((x^{2} + 1)^{π}((0)ln(x^{2} + 1) + \frac{(π)(2x + 0)}{(x^{2} + 1)})) + ({π}^{sin(x)}((cos(x))ln(π) + \frac{(sin(x))(0)}{(π)}))\\=&\frac{2πx(x^{2} + 1)^{π}}{(x^{2} + 1)} + {π}^{sin(x)}ln(π)cos(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !