Mathematics
语言:中文
Language:English

current location:Mathematical operation > History of Inequality Computation > Answer
    Overview: 3 questions will be solved this time.Among them
           ☆3 inequalities

[ 1/3Inequality]
    Assignment:Find the solution set of inequality 4 >(1+2*T)/(2*T-2) >2 .
    Question type: Inequality
    Solution:
    The inequality can be reduced to 2 inequalities:
        4 > ( 1 + 2 * T ) / ( 2 * T - 2 )         (1)
         ( 1 + 2 * T ) / ( 2 * T - 2 ) >2         (2)
        From the definition field of divisor
         2 * x - 2 ≠ 0        (3 )

    From inequality(1):
         T < 1 或  T > 3/2
    From inequality(2):
         1 < T < 5/2
    From inequality(3):
         T < 1 或  T > 1

    From inequalities (1) and (2)
         3/2 < T < 5/2     (4)
    From inequalities (3) and (4)
         3/2 < T < 5/2     (5)

    The final solution set is :

         3/2 < T < 5/2

[ 2/3Inequality]
    Assignment:Find the solution set of inequality (1-t)16+(1+2*t)4-(1+t) >= 0 .
    Question type: Inequality
    Solution:
    The inequality can be reduced to 1 inequality:
         ( 1 - t ) * 16 + ( 1 + 2 * t ) * 4 - ( 1 + t ) >= 0         (1)

    From inequality(1):
         t ≤ 19/9

    The final solution set is :

         t ≤ 19/9

[ 3/3Inequality]
    Assignment:Find the solution set of inequality (1-t)4+(1+2*t)2-(1+t) >0 .
    Question type: Inequality
    Solution:
    The inequality can be reduced to 1 inequality:
         ( 1 - t ) * 4 + ( 1 + 2 * t ) * 2 - ( 1 + t ) >0         (1)

    From inequality(1):
         t < 5

    The final solution set is :

         t < 5




Your problem has not been solved here? Please take a look at the  hot problems !


Return