current location:Mathematical operation >
History of Inequality Computation > Answer
Overview: 1 questions will be solved this time.Among them
☆1 inequalities
[ 1/1Inequality]
Assignment:Find the solution set of inequality (326n+17n^2)*(326+25n^2)/(326+51n)+837*(2+n)-356n-657-1.2[(51n+3.6n^2)*(102n+2.4n^2)/(102+7n)+10.5*(14+n)+30*(12+n)+240*(6+n)+930*(2.7+n) ) >= 0 .
Question type: Inequality
Solution:
The inequality can be reduced to 1 inequality:
( 326 * n + 17 * n ^ 2 ) * ( 326 + 25 * n ^ 2 ) / ( 326 + 51 * n ) + 837 * ( 2 + n ) - 356 * n - 657 - 1.2 * ( ( 51 * n + 3.6 * n ^ 2 ) * ( 102 * n + 2.4 * n ^ 2 ) / ( 102 + 7 * n ) + 10.5 * ( 14 + n ) + 30 * ( 12 + n ) + 240 * ( 6 + n ) + 930 * ( 2.7 + n ) ) >= 0 (1)
From the definition field of divisor
326 + 51 * x ≠ 0 (2 )
From the definition field of divisor
102 + 7 * x ≠ 0 (3 )
From inequality(1):
-19.284495 ≤ n ≤ -14.799312 或 -14.571429 ≤ n ≤ -6.392157 或 n ≥ 12.305059
From inequality(2):
n < -6.392157 或 n > -6.392157
From inequality(3):
n < -102/7 或 n > -102/7
From inequalities (1) and (2)
-19.284495 ≤ n ≤ -14.799312 或 -14.571429 ≤ n < -6.392157 或 n ≥ 12.305059 (4)
From inequalities (3) and (4)
-19.284495 ≤ n ≤ -14.799312 或 -102/7 < n < -6.392157 或 n ≥ 12.305059 (5)
The final solution set is :
-19.284495 ≤ n ≤ -14.799312 或 -102/7 < n < -6.392157 或 n ≥ 12.305059Your problem has not been solved here? Please take a look at the hot problems !