总述:本次共解1题。其中
☆算术计算1题
〖1/1算式〗
作业:求算式 (11*sqrt(50^2*1^2+1))/(1*sqrt(1^2+1)*sqrt(1+1/16*1^2)*sqrt(1+2500^2*1^2)) 的值.
题型:数学计算
解:
(11*sqrt(50^2*1^2+1))/(1*sqrt(1^2+1)*sqrt(1+1/16*1^2)*sqrt(1+2500^2*1^2))
=(11*sqrt2501)/(1*sqrt(1^2+1)*sqrt(1+1/16*1^2)*sqrt(1+2500^2*1^2))
=550.109989/(1*sqrt(1^2+1)*sqrt(1+1/16*1^2)*sqrt(1+2500^2*1^2))
=550.109989/(1*sqrt2*sqrt(1+1/16*1^2)*sqrt(1+2500^2*1^2))
=550.109989/(1*sqrt2*sqrt1.0625*sqrt(1+2500^2*1^2))
=550.109989/(1*sqrt2*sqrt1.0625*sqrt6250001)
=550.109989/3644.345292
=0.150949 答案:(11*sqrt(50^2*1^2+1))/(1*sqrt(1^2+1)*sqrt(1+1/16*1^2)*sqrt(1+2500^2*1^2))=0.150949你的问题在这里没有得到解决?请到 热门难题 里面看看吧!