本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sin(x)cos(x) - sin(cos(x)) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sin(x)cos(x) - sin(cos(x))\right)}{dx}\\=&cos(x)cos(x) + sin(x)*-sin(x) - cos(cos(x))*-sin(x)\\=&cos^{2}(x) + sin(x)cos(cos(x)) - sin^{2}(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( cos^{2}(x) + sin(x)cos(cos(x)) - sin^{2}(x)\right)}{dx}\\=&-2cos(x)sin(x) + cos(x)cos(cos(x)) + sin(x)*-sin(cos(x))*-sin(x) - 2sin(x)cos(x)\\=&-4sin(x)cos(x) + cos(x)cos(cos(x)) + sin(cos(x))sin^{2}(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( -4sin(x)cos(x) + cos(x)cos(cos(x)) + sin(cos(x))sin^{2}(x)\right)}{dx}\\=&-4cos(x)cos(x) - 4sin(x)*-sin(x) + -sin(x)cos(cos(x)) + cos(x)*-sin(cos(x))*-sin(x) + cos(cos(x))*-sin(x)sin^{2}(x) + sin(cos(x))*2sin(x)cos(x)\\=&-4cos^{2}(x) + 3sin(x)sin(cos(x))cos(x) - sin(x)cos(cos(x)) - sin^{3}(x)cos(cos(x)) + 4sin^{2}(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( -4cos^{2}(x) + 3sin(x)sin(cos(x))cos(x) - sin(x)cos(cos(x)) - sin^{3}(x)cos(cos(x)) + 4sin^{2}(x)\right)}{dx}\\=&-4*-2cos(x)sin(x) + 3cos(x)sin(cos(x))cos(x) + 3sin(x)cos(cos(x))*-sin(x)cos(x) + 3sin(x)sin(cos(x))*-sin(x) - cos(x)cos(cos(x)) - sin(x)*-sin(cos(x))*-sin(x) - 3sin^{2}(x)cos(x)cos(cos(x)) - sin^{3}(x)*-sin(cos(x))*-sin(x) + 4*2sin(x)cos(x)\\=& - 3sin^{2}(x)cos(x)cos(cos(x)) - 3sin^{2}(x)cos(cos(x))cos(x) + 3sin(cos(x))cos^{2}(x) - 3sin^{2}(x)sin(cos(x)) - cos(x)cos(cos(x)) - sin(cos(x))sin^{2}(x) + 16sin(x)cos(x) - sin(cos(x))sin^{4}(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!