本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(4{x}^{5} + 3{x}^{4} + 2{x}^{2} + x)}{({x}^{2} + 1)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{4x^{5}}{(x^{2} + 1)} + \frac{3x^{4}}{(x^{2} + 1)} + \frac{2x^{2}}{(x^{2} + 1)} + \frac{x}{(x^{2} + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{4x^{5}}{(x^{2} + 1)} + \frac{3x^{4}}{(x^{2} + 1)} + \frac{2x^{2}}{(x^{2} + 1)} + \frac{x}{(x^{2} + 1)}\right)}{dx}\\=&4(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})x^{5} + \frac{4*5x^{4}}{(x^{2} + 1)} + 3(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})x^{4} + \frac{3*4x^{3}}{(x^{2} + 1)} + 2(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})x^{2} + \frac{2*2x}{(x^{2} + 1)} + (\frac{-(2x + 0)}{(x^{2} + 1)^{2}})x + \frac{1}{(x^{2} + 1)}\\=&\frac{-8x^{6}}{(x^{2} + 1)^{2}} + \frac{20x^{4}}{(x^{2} + 1)} - \frac{6x^{5}}{(x^{2} + 1)^{2}} + \frac{12x^{3}}{(x^{2} + 1)} - \frac{4x^{3}}{(x^{2} + 1)^{2}} + \frac{4x}{(x^{2} + 1)} - \frac{2x^{2}}{(x^{2} + 1)^{2}} + \frac{1}{(x^{2} + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!