本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(1 - x + {x}^{2})}{(1 + x - {x}^{2})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - \frac{x}{(x - x^{2} + 1)} + \frac{x^{2}}{(x - x^{2} + 1)} + \frac{1}{(x - x^{2} + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( - \frac{x}{(x - x^{2} + 1)} + \frac{x^{2}}{(x - x^{2} + 1)} + \frac{1}{(x - x^{2} + 1)}\right)}{dx}\\=& - (\frac{-(1 - 2x + 0)}{(x - x^{2} + 1)^{2}})x - \frac{1}{(x - x^{2} + 1)} + (\frac{-(1 - 2x + 0)}{(x - x^{2} + 1)^{2}})x^{2} + \frac{2x}{(x - x^{2} + 1)} + (\frac{-(1 - 2x + 0)}{(x - x^{2} + 1)^{2}})\\=&\frac{-3x^{2}}{(x - x^{2} + 1)^{2}} + \frac{2x^{3}}{(x - x^{2} + 1)^{2}} + \frac{2x}{(x - x^{2} + 1)} + \frac{3x}{(x - x^{2} + 1)^{2}} - \frac{1}{(x - x^{2} + 1)} - \frac{1}{(x - x^{2} + 1)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!