本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{({(3 - 2x)}^{2})}{(5{(x - 1)}^{2} + 1)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{4x^{2}}{(5x^{2} - 10x + 6)} - \frac{12x}{(5x^{2} - 10x + 6)} + \frac{9}{(5x^{2} - 10x + 6)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{4x^{2}}{(5x^{2} - 10x + 6)} - \frac{12x}{(5x^{2} - 10x + 6)} + \frac{9}{(5x^{2} - 10x + 6)}\right)}{dx}\\=&4(\frac{-(5*2x - 10 + 0)}{(5x^{2} - 10x + 6)^{2}})x^{2} + \frac{4*2x}{(5x^{2} - 10x + 6)} - 12(\frac{-(5*2x - 10 + 0)}{(5x^{2} - 10x + 6)^{2}})x - \frac{12}{(5x^{2} - 10x + 6)} + 9(\frac{-(5*2x - 10 + 0)}{(5x^{2} - 10x + 6)^{2}})\\=&\frac{-40x^{3}}{(5x^{2} - 10x + 6)^{2}} + \frac{160x^{2}}{(5x^{2} - 10x + 6)^{2}} + \frac{8x}{(5x^{2} - 10x + 6)} - \frac{210x}{(5x^{2} - 10x + 6)^{2}} - \frac{12}{(5x^{2} - 10x + 6)} + \frac{90}{(5x^{2} - 10x + 6)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!