本次共计算 1 个题目:每一题对 x 求 10 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数2{x}^{10} - 11{x}^{8} - 3sqrt(2){x}^{7} + (\frac{27}{2}){x}^{6} + (\frac{9}{2})sqrt(2){x}^{5} - (\frac{25}{4}){x}^{4} - (\frac{9}{4})sqrt(2){x}^{3} + {x}^{2} + (\frac{3}{8})sqrt(2)x - \frac{({n}^{2} - 12n + 27)(2{x}^{8} - 4{x}^{6} + 3{x}^{4} - {x}^{2} + \frac{1}{8})}{(n - 2)} 关于 x 的 10 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - 3x^{7}sqrt(2) + \frac{9}{2}x^{5}sqrt(2) - \frac{9}{4}x^{3}sqrt(2) + \frac{3}{8}xsqrt(2) + 2x^{10} - 11x^{8} + \frac{27}{2}x^{6} + x^{2} - \frac{25}{4}x^{4} - \frac{2n^{2}x^{8}}{(n - 2)} + \frac{4n^{2}x^{6}}{(n - 2)} - \frac{3n^{2}x^{4}}{(n - 2)} + \frac{n^{2}x^{2}}{(n - 2)} + \frac{24nx^{8}}{(n - 2)} - \frac{48nx^{6}}{(n - 2)} + \frac{36nx^{4}}{(n - 2)} - \frac{12nx^{2}}{(n - 2)} - \frac{\frac{1}{8}n^{2}}{(n - 2)} + \frac{\frac{3}{2}n}{(n - 2)} - \frac{54x^{8}}{(n - 2)} + \frac{108x^{6}}{(n - 2)} - \frac{81x^{4}}{(n - 2)} + \frac{27x^{2}}{(n - 2)} - \frac{\frac{27}{8}}{(n - 2)}\\\\ &\color{blue}{函数的 10 阶导数:} \\=&7257600\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!