本次共计算 1 个题目:每一题对 d 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(d)(1 - (m))z{(\frac{(-x - (c)z)}{((d)(m)z)})}^{(\frac{(m)}{((m) - 1)})} 关于 d 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = zd(\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})} - mzd(\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( zd(\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})} - mzd(\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})}\right)}{dd}\\=&z(\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})} + zd((\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})}(((\frac{-(0 + 0)}{(m - 1)^{2}})m + 0)ln(\frac{-x}{mzd} - \frac{c}{md}) + \frac{(\frac{m}{(m - 1)})(\frac{-x*-1}{mzd^{2}} - \frac{c*-1}{md^{2}})}{(\frac{-x}{mzd} - \frac{c}{md})})) - mz(\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})} - mzd((\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})}(((\frac{-(0 + 0)}{(m - 1)^{2}})m + 0)ln(\frac{-x}{mzd} - \frac{c}{md}) + \frac{(\frac{m}{(m - 1)})(\frac{-x*-1}{mzd^{2}} - \frac{c*-1}{md^{2}})}{(\frac{-x}{mzd} - \frac{c}{md})}))\\=&z(\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})} + \frac{x(\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})}}{(m - 1)(\frac{-x}{mzd} - \frac{c}{md})d} + \frac{zc(\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})}}{(m - 1)(\frac{-x}{mzd} - \frac{c}{md})d} - mz(\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})} - \frac{mx(\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})}}{(m - 1)(\frac{-x}{mzd} - \frac{c}{md})d} - \frac{mzc(\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})}}{(m - 1)(\frac{-x}{mzd} - \frac{c}{md})d}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!