数学
         
语言:中文    Language:English
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案

    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数arcsin(ln(sec(x))) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arcsin(ln(sec(x)))\right)}{dx}\\=&(\frac{(\frac{sec(x)tan(x)}{(sec(x))})}{((1 - (ln(sec(x)))^{2})^{\frac{1}{2}})})\\=&\frac{tan(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{tan(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{1}{2}}}\right)}{dx}\\=&(\frac{\frac{-1}{2}(\frac{-2ln(sec(x))sec(x)tan(x)}{(sec(x))} + 0)}{(-ln^{2}(sec(x)) + 1)^{\frac{3}{2}}})tan(x) + \frac{sec^{2}(x)(1)}{(-ln^{2}(sec(x)) + 1)^{\frac{1}{2}}}\\=&\frac{ln(sec(x))tan^{2}(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{3}{2}}} + \frac{sec^{2}(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{ln(sec(x))tan^{2}(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{3}{2}}} + \frac{sec^{2}(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{1}{2}}}\right)}{dx}\\=&(\frac{\frac{-3}{2}(\frac{-2ln(sec(x))sec(x)tan(x)}{(sec(x))} + 0)}{(-ln^{2}(sec(x)) + 1)^{\frac{5}{2}}})ln(sec(x))tan^{2}(x) + \frac{sec(x)tan(x)tan^{2}(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{3}{2}}(sec(x))} + \frac{ln(sec(x))*2tan(x)sec^{2}(x)(1)}{(-ln^{2}(sec(x)) + 1)^{\frac{3}{2}}} + (\frac{\frac{-1}{2}(\frac{-2ln(sec(x))sec(x)tan(x)}{(sec(x))} + 0)}{(-ln^{2}(sec(x)) + 1)^{\frac{3}{2}}})sec^{2}(x) + \frac{2sec^{2}(x)tan(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{1}{2}}}\\=&\frac{3ln(sec(x))tan(x)sec^{2}(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{3}{2}}} + \frac{2tan(x)sec^{2}(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{1}{2}}} + \frac{3ln^{2}(sec(x))tan^{3}(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{5}{2}}} + \frac{tan^{3}(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{3}{2}}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{3ln(sec(x))tan(x)sec^{2}(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{3}{2}}} + \frac{2tan(x)sec^{2}(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{1}{2}}} + \frac{3ln^{2}(sec(x))tan^{3}(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{5}{2}}} + \frac{tan^{3}(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{3}{2}}}\right)}{dx}\\=&3(\frac{\frac{-3}{2}(\frac{-2ln(sec(x))sec(x)tan(x)}{(sec(x))} + 0)}{(-ln^{2}(sec(x)) + 1)^{\frac{5}{2}}})ln(sec(x))tan(x)sec^{2}(x) + \frac{3sec(x)tan(x)tan(x)sec^{2}(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{3}{2}}(sec(x))} + \frac{3ln(sec(x))sec^{2}(x)(1)sec^{2}(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{3}{2}}} + \frac{3ln(sec(x))tan(x)*2sec^{2}(x)tan(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{3}{2}}} + 2(\frac{\frac{-1}{2}(\frac{-2ln(sec(x))sec(x)tan(x)}{(sec(x))} + 0)}{(-ln^{2}(sec(x)) + 1)^{\frac{3}{2}}})tan(x)sec^{2}(x) + \frac{2sec^{2}(x)(1)sec^{2}(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{1}{2}}} + \frac{2tan(x)*2sec^{2}(x)tan(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{1}{2}}} + 3(\frac{\frac{-5}{2}(\frac{-2ln(sec(x))sec(x)tan(x)}{(sec(x))} + 0)}{(-ln^{2}(sec(x)) + 1)^{\frac{7}{2}}})ln^{2}(sec(x))tan^{3}(x) + \frac{3*2ln(sec(x))sec(x)tan(x)tan^{3}(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{5}{2}}(sec(x))} + \frac{3ln^{2}(sec(x))*3tan^{2}(x)sec^{2}(x)(1)}{(-ln^{2}(sec(x)) + 1)^{\frac{5}{2}}} + (\frac{\frac{-3}{2}(\frac{-2ln(sec(x))sec(x)tan(x)}{(sec(x))} + 0)}{(-ln^{2}(sec(x)) + 1)^{\frac{5}{2}}})tan^{3}(x) + \frac{3tan^{2}(x)sec^{2}(x)(1)}{(-ln^{2}(sec(x)) + 1)^{\frac{3}{2}}}\\=&\frac{18ln^{2}(sec(x))tan^{2}(x)sec^{2}(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{5}{2}}} + \frac{6tan^{2}(x)sec^{2}(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{3}{2}}} + \frac{3ln(sec(x))sec^{4}(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{3}{2}}} + \frac{8ln(sec(x))tan^{2}(x)sec^{2}(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{3}{2}}} + \frac{2sec^{4}(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{1}{2}}} + \frac{4tan^{2}(x)sec^{2}(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{1}{2}}} + \frac{15ln^{3}(sec(x))tan^{4}(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{7}{2}}} + \frac{9ln(sec(x))tan^{4}(x)}{(-ln^{2}(sec(x)) + 1)^{\frac{5}{2}}}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。