本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数xsin(x)*7xxx{2}^{x}sec(x) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 7x^{4}{2}^{x}sin(x)sec(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 7x^{4}{2}^{x}sin(x)sec(x)\right)}{dx}\\=&7*4x^{3}{2}^{x}sin(x)sec(x) + 7x^{4}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))sin(x)sec(x) + 7x^{4}{2}^{x}cos(x)sec(x) + 7x^{4}{2}^{x}sin(x)sec(x)tan(x)\\=&28x^{3}{2}^{x}sin(x)sec(x) + 7x^{4}{2}^{x}ln(2)sin(x)sec(x) + 7x^{4}{2}^{x}cos(x)sec(x) + 7x^{4}{2}^{x}sin(x)tan(x)sec(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 28x^{3}{2}^{x}sin(x)sec(x) + 7x^{4}{2}^{x}ln(2)sin(x)sec(x) + 7x^{4}{2}^{x}cos(x)sec(x) + 7x^{4}{2}^{x}sin(x)tan(x)sec(x)\right)}{dx}\\=&28*3x^{2}{2}^{x}sin(x)sec(x) + 28x^{3}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))sin(x)sec(x) + 28x^{3}{2}^{x}cos(x)sec(x) + 28x^{3}{2}^{x}sin(x)sec(x)tan(x) + 7*4x^{3}{2}^{x}ln(2)sin(x)sec(x) + 7x^{4}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln(2)sin(x)sec(x) + \frac{7x^{4}{2}^{x}*0sin(x)sec(x)}{(2)} + 7x^{4}{2}^{x}ln(2)cos(x)sec(x) + 7x^{4}{2}^{x}ln(2)sin(x)sec(x)tan(x) + 7*4x^{3}{2}^{x}cos(x)sec(x) + 7x^{4}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))cos(x)sec(x) + 7x^{4}{2}^{x}*-sin(x)sec(x) + 7x^{4}{2}^{x}cos(x)sec(x)tan(x) + 7*4x^{3}{2}^{x}sin(x)tan(x)sec(x) + 7x^{4}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))sin(x)tan(x)sec(x) + 7x^{4}{2}^{x}cos(x)tan(x)sec(x) + 7x^{4}{2}^{x}sin(x)sec^{2}(x)(1)sec(x) + 7x^{4}{2}^{x}sin(x)tan(x)sec(x)tan(x)\\=&7x^{4}{2}^{x}sin(x)sec^{3}(x) + 56x^{3}{2}^{x}ln(2)sin(x)sec(x) + 56x^{3}{2}^{x}cos(x)sec(x) + 56x^{3}{2}^{x}sin(x)tan(x)sec(x) + 7x^{4}{2}^{x}ln^{2}(2)sin(x)sec(x) + 14x^{4}{2}^{x}ln(2)cos(x)sec(x) + 14x^{4}{2}^{x}ln(2)sin(x)tan(x)sec(x) - 7x^{4}{2}^{x}sin(x)sec(x) + 14x^{4}{2}^{x}cos(x)tan(x)sec(x) + 84x^{2}{2}^{x}sin(x)sec(x) + 7x^{4}{2}^{x}sin(x)tan^{2}(x)sec(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 7x^{4}{2}^{x}sin(x)sec^{3}(x) + 56x^{3}{2}^{x}ln(2)sin(x)sec(x) + 56x^{3}{2}^{x}cos(x)sec(x) + 56x^{3}{2}^{x}sin(x)tan(x)sec(x) + 7x^{4}{2}^{x}ln^{2}(2)sin(x)sec(x) + 14x^{4}{2}^{x}ln(2)cos(x)sec(x) + 14x^{4}{2}^{x}ln(2)sin(x)tan(x)sec(x) - 7x^{4}{2}^{x}sin(x)sec(x) + 14x^{4}{2}^{x}cos(x)tan(x)sec(x) + 84x^{2}{2}^{x}sin(x)sec(x) + 7x^{4}{2}^{x}sin(x)tan^{2}(x)sec(x)\right)}{dx}\\=&7*4x^{3}{2}^{x}sin(x)sec^{3}(x) + 7x^{4}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))sin(x)sec^{3}(x) + 7x^{4}{2}^{x}cos(x)sec^{3}(x) + 7x^{4}{2}^{x}sin(x)*3sec^{3}(x)tan(x) + 56*3x^{2}{2}^{x}ln(2)sin(x)sec(x) + 56x^{3}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln(2)sin(x)sec(x) + \frac{56x^{3}{2}^{x}*0sin(x)sec(x)}{(2)} + 56x^{3}{2}^{x}ln(2)cos(x)sec(x) + 56x^{3}{2}^{x}ln(2)sin(x)sec(x)tan(x) + 56*3x^{2}{2}^{x}cos(x)sec(x) + 56x^{3}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))cos(x)sec(x) + 56x^{3}{2}^{x}*-sin(x)sec(x) + 56x^{3}{2}^{x}cos(x)sec(x)tan(x) + 56*3x^{2}{2}^{x}sin(x)tan(x)sec(x) + 56x^{3}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))sin(x)tan(x)sec(x) + 56x^{3}{2}^{x}cos(x)tan(x)sec(x) + 56x^{3}{2}^{x}sin(x)sec^{2}(x)(1)sec(x) + 56x^{3}{2}^{x}sin(x)tan(x)sec(x)tan(x) + 7*4x^{3}{2}^{x}ln^{2}(2)sin(x)sec(x) + 7x^{4}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln^{2}(2)sin(x)sec(x) + \frac{7x^{4}{2}^{x}*2ln(2)*0sin(x)sec(x)}{(2)} + 7x^{4}{2}^{x}ln^{2}(2)cos(x)sec(x) + 7x^{4}{2}^{x}ln^{2}(2)sin(x)sec(x)tan(x) + 14*4x^{3}{2}^{x}ln(2)cos(x)sec(x) + 14x^{4}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln(2)cos(x)sec(x) + \frac{14x^{4}{2}^{x}*0cos(x)sec(x)}{(2)} + 14x^{4}{2}^{x}ln(2)*-sin(x)sec(x) + 14x^{4}{2}^{x}ln(2)cos(x)sec(x)tan(x) + 14*4x^{3}{2}^{x}ln(2)sin(x)tan(x)sec(x) + 14x^{4}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln(2)sin(x)tan(x)sec(x) + \frac{14x^{4}{2}^{x}*0sin(x)tan(x)sec(x)}{(2)} + 14x^{4}{2}^{x}ln(2)cos(x)tan(x)sec(x) + 14x^{4}{2}^{x}ln(2)sin(x)sec^{2}(x)(1)sec(x) + 14x^{4}{2}^{x}ln(2)sin(x)tan(x)sec(x)tan(x) - 7*4x^{3}{2}^{x}sin(x)sec(x) - 7x^{4}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))sin(x)sec(x) - 7x^{4}{2}^{x}cos(x)sec(x) - 7x^{4}{2}^{x}sin(x)sec(x)tan(x) + 14*4x^{3}{2}^{x}cos(x)tan(x)sec(x) + 14x^{4}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))cos(x)tan(x)sec(x) + 14x^{4}{2}^{x}*-sin(x)tan(x)sec(x) + 14x^{4}{2}^{x}cos(x)sec^{2}(x)(1)sec(x) + 14x^{4}{2}^{x}cos(x)tan(x)sec(x)tan(x) + 84*2x{2}^{x}sin(x)sec(x) + 84x^{2}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))sin(x)sec(x) + 84x^{2}{2}^{x}cos(x)sec(x) + 84x^{2}{2}^{x}sin(x)sec(x)tan(x) + 7*4x^{3}{2}^{x}sin(x)tan^{2}(x)sec(x) + 7x^{4}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))sin(x)tan^{2}(x)sec(x) + 7x^{4}{2}^{x}cos(x)tan^{2}(x)sec(x) + 7x^{4}{2}^{x}sin(x)*2tan(x)sec^{2}(x)(1)sec(x) + 7x^{4}{2}^{x}sin(x)tan^{2}(x)sec(x)tan(x)\\=&84x^{3}{2}^{x}sin(x)sec^{3}(x) + 21x^{4}{2}^{x}ln(2)sin(x)sec^{3}(x) + 21x^{4}{2}^{x}cos(x)sec^{3}(x) + 35x^{4}{2}^{x}sin(x)tan(x)sec^{3}(x) + 84x^{3}{2}^{x}ln^{2}(2)sin(x)sec(x) + 168x^{3}{2}^{x}ln(2)cos(x)sec(x) + 168x^{3}{2}^{x}ln(2)sin(x)tan(x)sec(x) + 252x^{2}{2}^{x}cos(x)sec(x) - 84x^{3}{2}^{x}sin(x)sec(x) + 168x^{3}{2}^{x}cos(x)tan(x)sec(x) + 252x^{2}{2}^{x}sin(x)tan(x)sec(x) + 84x^{3}{2}^{x}sin(x)tan^{2}(x)sec(x) + 7x^{4}{2}^{x}ln^{3}(2)sin(x)sec(x) - 21x^{4}{2}^{x}ln(2)sin(x)sec(x) + 21x^{4}{2}^{x}ln^{2}(2)cos(x)sec(x) + 21x^{4}{2}^{x}ln^{2}(2)sin(x)tan(x)sec(x) - 7x^{4}{2}^{x}cos(x)sec(x) + 42x^{4}{2}^{x}ln(2)cos(x)tan(x)sec(x) - 21x^{4}{2}^{x}sin(x)tan(x)sec(x) + 252x^{2}{2}^{x}ln(2)sin(x)sec(x) + 21x^{4}{2}^{x}ln(2)sin(x)tan^{2}(x)sec(x) + 21x^{4}{2}^{x}cos(x)tan^{2}(x)sec(x) + 168x{2}^{x}sin(x)sec(x) + 7x^{4}{2}^{x}sin(x)tan^{3}(x)sec(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 84x^{3}{2}^{x}sin(x)sec^{3}(x) + 21x^{4}{2}^{x}ln(2)sin(x)sec^{3}(x) + 21x^{4}{2}^{x}cos(x)sec^{3}(x) + 35x^{4}{2}^{x}sin(x)tan(x)sec^{3}(x) + 84x^{3}{2}^{x}ln^{2}(2)sin(x)sec(x) + 168x^{3}{2}^{x}ln(2)cos(x)sec(x) + 168x^{3}{2}^{x}ln(2)sin(x)tan(x)sec(x) + 252x^{2}{2}^{x}cos(x)sec(x) - 84x^{3}{2}^{x}sin(x)sec(x) + 168x^{3}{2}^{x}cos(x)tan(x)sec(x) + 252x^{2}{2}^{x}sin(x)tan(x)sec(x) + 84x^{3}{2}^{x}sin(x)tan^{2}(x)sec(x) + 7x^{4}{2}^{x}ln^{3}(2)sin(x)sec(x) - 21x^{4}{2}^{x}ln(2)sin(x)sec(x) + 21x^{4}{2}^{x}ln^{2}(2)cos(x)sec(x) + 21x^{4}{2}^{x}ln^{2}(2)sin(x)tan(x)sec(x) - 7x^{4}{2}^{x}cos(x)sec(x) + 42x^{4}{2}^{x}ln(2)cos(x)tan(x)sec(x) - 21x^{4}{2}^{x}sin(x)tan(x)sec(x) + 252x^{2}{2}^{x}ln(2)sin(x)sec(x) + 21x^{4}{2}^{x}ln(2)sin(x)tan^{2}(x)sec(x) + 21x^{4}{2}^{x}cos(x)tan^{2}(x)sec(x) + 168x{2}^{x}sin(x)sec(x) + 7x^{4}{2}^{x}sin(x)tan^{3}(x)sec(x)\right)}{dx}\\=&84*3x^{2}{2}^{x}sin(x)sec^{3}(x) + 84x^{3}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))sin(x)sec^{3}(x) + 84x^{3}{2}^{x}cos(x)sec^{3}(x) + 84x^{3}{2}^{x}sin(x)*3sec^{3}(x)tan(x) + 21*4x^{3}{2}^{x}ln(2)sin(x)sec^{3}(x) + 21x^{4}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln(2)sin(x)sec^{3}(x) + \frac{21x^{4}{2}^{x}*0sin(x)sec^{3}(x)}{(2)} + 21x^{4}{2}^{x}ln(2)cos(x)sec^{3}(x) + 21x^{4}{2}^{x}ln(2)sin(x)*3sec^{3}(x)tan(x) + 21*4x^{3}{2}^{x}cos(x)sec^{3}(x) + 21x^{4}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))cos(x)sec^{3}(x) + 21x^{4}{2}^{x}*-sin(x)sec^{3}(x) + 21x^{4}{2}^{x}cos(x)*3sec^{3}(x)tan(x) + 35*4x^{3}{2}^{x}sin(x)tan(x)sec^{3}(x) + 35x^{4}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))sin(x)tan(x)sec^{3}(x) + 35x^{4}{2}^{x}cos(x)tan(x)sec^{3}(x) + 35x^{4}{2}^{x}sin(x)sec^{2}(x)(1)sec^{3}(x) + 35x^{4}{2}^{x}sin(x)tan(x)*3sec^{3}(x)tan(x) + 84*3x^{2}{2}^{x}ln^{2}(2)sin(x)sec(x) + 84x^{3}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln^{2}(2)sin(x)sec(x) + \frac{84x^{3}{2}^{x}*2ln(2)*0sin(x)sec(x)}{(2)} + 84x^{3}{2}^{x}ln^{2}(2)cos(x)sec(x) + 84x^{3}{2}^{x}ln^{2}(2)sin(x)sec(x)tan(x) + 168*3x^{2}{2}^{x}ln(2)cos(x)sec(x) + 168x^{3}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln(2)cos(x)sec(x) + \frac{168x^{3}{2}^{x}*0cos(x)sec(x)}{(2)} + 168x^{3}{2}^{x}ln(2)*-sin(x)sec(x) + 168x^{3}{2}^{x}ln(2)cos(x)sec(x)tan(x) + 168*3x^{2}{2}^{x}ln(2)sin(x)tan(x)sec(x) + 168x^{3}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln(2)sin(x)tan(x)sec(x) + \frac{168x^{3}{2}^{x}*0sin(x)tan(x)sec(x)}{(2)} + 168x^{3}{2}^{x}ln(2)cos(x)tan(x)sec(x) + 168x^{3}{2}^{x}ln(2)sin(x)sec^{2}(x)(1)sec(x) + 168x^{3}{2}^{x}ln(2)sin(x)tan(x)sec(x)tan(x) + 252*2x{2}^{x}cos(x)sec(x) + 252x^{2}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))cos(x)sec(x) + 252x^{2}{2}^{x}*-sin(x)sec(x) + 252x^{2}{2}^{x}cos(x)sec(x)tan(x) - 84*3x^{2}{2}^{x}sin(x)sec(x) - 84x^{3}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))sin(x)sec(x) - 84x^{3}{2}^{x}cos(x)sec(x) - 84x^{3}{2}^{x}sin(x)sec(x)tan(x) + 168*3x^{2}{2}^{x}cos(x)tan(x)sec(x) + 168x^{3}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))cos(x)tan(x)sec(x) + 168x^{3}{2}^{x}*-sin(x)tan(x)sec(x) + 168x^{3}{2}^{x}cos(x)sec^{2}(x)(1)sec(x) + 168x^{3}{2}^{x}cos(x)tan(x)sec(x)tan(x) + 252*2x{2}^{x}sin(x)tan(x)sec(x) + 252x^{2}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))sin(x)tan(x)sec(x) + 252x^{2}{2}^{x}cos(x)tan(x)sec(x) + 252x^{2}{2}^{x}sin(x)sec^{2}(x)(1)sec(x) + 252x^{2}{2}^{x}sin(x)tan(x)sec(x)tan(x) + 84*3x^{2}{2}^{x}sin(x)tan^{2}(x)sec(x) + 84x^{3}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))sin(x)tan^{2}(x)sec(x) + 84x^{3}{2}^{x}cos(x)tan^{2}(x)sec(x) + 84x^{3}{2}^{x}sin(x)*2tan(x)sec^{2}(x)(1)sec(x) + 84x^{3}{2}^{x}sin(x)tan^{2}(x)sec(x)tan(x) + 7*4x^{3}{2}^{x}ln^{3}(2)sin(x)sec(x) + 7x^{4}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln^{3}(2)sin(x)sec(x) + \frac{7x^{4}{2}^{x}*3ln^{2}(2)*0sin(x)sec(x)}{(2)} + 7x^{4}{2}^{x}ln^{3}(2)cos(x)sec(x) + 7x^{4}{2}^{x}ln^{3}(2)sin(x)sec(x)tan(x) - 21*4x^{3}{2}^{x}ln(2)sin(x)sec(x) - 21x^{4}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln(2)sin(x)sec(x) - \frac{21x^{4}{2}^{x}*0sin(x)sec(x)}{(2)} - 21x^{4}{2}^{x}ln(2)cos(x)sec(x) - 21x^{4}{2}^{x}ln(2)sin(x)sec(x)tan(x) + 21*4x^{3}{2}^{x}ln^{2}(2)cos(x)sec(x) + 21x^{4}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln^{2}(2)cos(x)sec(x) + \frac{21x^{4}{2}^{x}*2ln(2)*0cos(x)sec(x)}{(2)} + 21x^{4}{2}^{x}ln^{2}(2)*-sin(x)sec(x) + 21x^{4}{2}^{x}ln^{2}(2)cos(x)sec(x)tan(x) + 21*4x^{3}{2}^{x}ln^{2}(2)sin(x)tan(x)sec(x) + 21x^{4}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln^{2}(2)sin(x)tan(x)sec(x) + \frac{21x^{4}{2}^{x}*2ln(2)*0sin(x)tan(x)sec(x)}{(2)} + 21x^{4}{2}^{x}ln^{2}(2)cos(x)tan(x)sec(x) + 21x^{4}{2}^{x}ln^{2}(2)sin(x)sec^{2}(x)(1)sec(x) + 21x^{4}{2}^{x}ln^{2}(2)sin(x)tan(x)sec(x)tan(x) - 7*4x^{3}{2}^{x}cos(x)sec(x) - 7x^{4}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))cos(x)sec(x) - 7x^{4}{2}^{x}*-sin(x)sec(x) - 7x^{4}{2}^{x}cos(x)sec(x)tan(x) + 42*4x^{3}{2}^{x}ln(2)cos(x)tan(x)sec(x) + 42x^{4}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln(2)cos(x)tan(x)sec(x) + \frac{42x^{4}{2}^{x}*0cos(x)tan(x)sec(x)}{(2)} + 42x^{4}{2}^{x}ln(2)*-sin(x)tan(x)sec(x) + 42x^{4}{2}^{x}ln(2)cos(x)sec^{2}(x)(1)sec(x) + 42x^{4}{2}^{x}ln(2)cos(x)tan(x)sec(x)tan(x) - 21*4x^{3}{2}^{x}sin(x)tan(x)sec(x) - 21x^{4}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))sin(x)tan(x)sec(x) - 21x^{4}{2}^{x}cos(x)tan(x)sec(x) - 21x^{4}{2}^{x}sin(x)sec^{2}(x)(1)sec(x) - 21x^{4}{2}^{x}sin(x)tan(x)sec(x)tan(x) + 252*2x{2}^{x}ln(2)sin(x)sec(x) + 252x^{2}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln(2)sin(x)sec(x) + \frac{252x^{2}{2}^{x}*0sin(x)sec(x)}{(2)} + 252x^{2}{2}^{x}ln(2)cos(x)sec(x) + 252x^{2}{2}^{x}ln(2)sin(x)sec(x)tan(x) + 21*4x^{3}{2}^{x}ln(2)sin(x)tan^{2}(x)sec(x) + 21x^{4}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln(2)sin(x)tan^{2}(x)sec(x) + \frac{21x^{4}{2}^{x}*0sin(x)tan^{2}(x)sec(x)}{(2)} + 21x^{4}{2}^{x}ln(2)cos(x)tan^{2}(x)sec(x) + 21x^{4}{2}^{x}ln(2)sin(x)*2tan(x)sec^{2}(x)(1)sec(x) + 21x^{4}{2}^{x}ln(2)sin(x)tan^{2}(x)sec(x)tan(x) + 21*4x^{3}{2}^{x}cos(x)tan^{2}(x)sec(x) + 21x^{4}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))cos(x)tan^{2}(x)sec(x) + 21x^{4}{2}^{x}*-sin(x)tan^{2}(x)sec(x) + 21x^{4}{2}^{x}cos(x)*2tan(x)sec^{2}(x)(1)sec(x) + 21x^{4}{2}^{x}cos(x)tan^{2}(x)sec(x)tan(x) + 168 * {2}^{x}sin(x)sec(x) + 168x({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))sin(x)sec(x) + 168x{2}^{x}cos(x)sec(x) + 168x{2}^{x}sin(x)sec(x)tan(x) + 7*4x^{3}{2}^{x}sin(x)tan^{3}(x)sec(x) + 7x^{4}({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))sin(x)tan^{3}(x)sec(x) + 7x^{4}{2}^{x}cos(x)tan^{3}(x)sec(x) + 7x^{4}{2}^{x}sin(x)*3tan^{2}(x)sec^{2}(x)(1)sec(x) + 7x^{4}{2}^{x}sin(x)tan^{3}(x)sec(x)tan(x)\\=&35x^{4}{2}^{x}sin(x)sec^{5}(x) + 336x^{3}{2}^{x}ln(2)sin(x)sec^{3}(x) + 336x^{3}{2}^{x}cos(x)sec^{3}(x) + 560x^{3}{2}^{x}sin(x)tan(x)sec^{3}(x) + 42x^{4}{2}^{x}ln^{2}(2)sin(x)sec^{3}(x) + 84x^{4}{2}^{x}ln(2)cos(x)sec^{3}(x) + 140x^{4}{2}^{x}ln(2)sin(x)tan(x)sec^{3}(x) - 42x^{4}{2}^{x}sin(x)sec^{3}(x) + 140x^{4}{2}^{x}cos(x)tan(x)sec^{3}(x) + 504x^{2}{2}^{x}sin(x)sec^{3}(x) + 126x^{4}{2}^{x}sin(x)tan^{2}(x)sec^{3}(x) + 112x^{3}{2}^{x}ln^{3}(2)sin(x)sec(x) - 336x^{3}{2}^{x}ln(2)sin(x)sec(x) + 336x^{3}{2}^{x}ln^{2}(2)cos(x)sec(x) + 336x^{3}{2}^{x}ln^{2}(2)sin(x)tan(x)sec(x) + 1008x^{2}{2}^{x}ln(2)cos(x)sec(x) - 112x^{3}{2}^{x}cos(x)sec(x) + 672x^{3}{2}^{x}ln(2)cos(x)tan(x)sec(x) + 1008x^{2}{2}^{x}ln(2)sin(x)tan(x)sec(x) + 336x^{3}{2}^{x}ln(2)sin(x)tan^{2}(x)sec(x) + 672x{2}^{x}cos(x)sec(x) - 504x^{2}{2}^{x}sin(x)sec(x) + 1008x^{2}{2}^{x}cos(x)tan(x)sec(x) - 336x^{3}{2}^{x}sin(x)tan(x)sec(x) + 336x^{3}{2}^{x}cos(x)tan^{2}(x)sec(x) + 672x{2}^{x}sin(x)tan(x)sec(x) + 504x^{2}{2}^{x}sin(x)tan^{2}(x)sec(x) + 112x^{3}{2}^{x}sin(x)tan^{3}(x)sec(x) + 7x^{4}{2}^{x}ln^{4}(2)sin(x)sec(x) - 42x^{4}{2}^{x}ln^{2}(2)sin(x)sec(x) + 28x^{4}{2}^{x}ln^{3}(2)cos(x)sec(x) + 28x^{4}{2}^{x}ln^{3}(2)sin(x)tan(x)sec(x) + 7x^{4}{2}^{x}sin(x)sec(x) - 28x^{4}{2}^{x}ln(2)cos(x)sec(x) - 84x^{4}{2}^{x}ln(2)sin(x)tan(x)sec(x) + 84x^{4}{2}^{x}ln^{2}(2)cos(x)tan(x)sec(x) + 504x^{2}{2}^{x}ln^{2}(2)sin(x)sec(x) + 42x^{4}{2}^{x}ln^{2}(2)sin(x)tan^{2}(x)sec(x) - 28x^{4}{2}^{x}cos(x)tan(x)sec(x) + 84x^{4}{2}^{x}ln(2)cos(x)tan^{2}(x)sec(x) - 42x^{4}{2}^{x}sin(x)tan^{2}(x)sec(x) + 672x{2}^{x}ln(2)sin(x)sec(x) + 28x^{4}{2}^{x}ln(2)sin(x)tan^{3}(x)sec(x) + 28x^{4}{2}^{x}cos(x)tan^{3}(x)sec(x) + 168 * {2}^{x}sin(x)sec(x) + 7x^{4}{2}^{x}sin(x)tan^{4}(x)sec(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!