本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(ax + b(1 - x) - r){\frac{1}{(({x}^{2})({q}^{2}) + ({(1 - x)}^{2}){w}^{2})}}^{\frac{1}{2}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{ax}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{1}{2}}} - \frac{bx}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{1}{2}}} + \frac{b}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{1}{2}}} - \frac{r}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{1}{2}}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{ax}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{1}{2}}} - \frac{bx}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{1}{2}}} + \frac{b}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{1}{2}}} - \frac{r}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{1}{2}}}\right)}{dx}\\=&(\frac{\frac{-1}{2}(q^{2}*2x + w^{2}*2x - 2w^{2} + 0)}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{3}{2}}})ax + \frac{a}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{1}{2}}} - (\frac{\frac{-1}{2}(q^{2}*2x + w^{2}*2x - 2w^{2} + 0)}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{3}{2}}})bx - \frac{b}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{1}{2}}} + (\frac{\frac{-1}{2}(q^{2}*2x + w^{2}*2x - 2w^{2} + 0)}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{3}{2}}})b + 0 - (\frac{\frac{-1}{2}(q^{2}*2x + w^{2}*2x - 2w^{2} + 0)}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{3}{2}}})r + 0\\=&\frac{-aq^{2}x^{2}}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{3}{2}}} - \frac{aw^{2}x^{2}}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{3}{2}}} + \frac{aw^{2}x}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{3}{2}}} + \frac{a}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{1}{2}}} + \frac{bq^{2}x^{2}}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{3}{2}}} + \frac{bw^{2}x^{2}}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{3}{2}}} - \frac{2bw^{2}x}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{3}{2}}} - \frac{bq^{2}x}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{3}{2}}} + \frac{bw^{2}}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{3}{2}}} - \frac{b}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{1}{2}}} + \frac{rq^{2}x}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{3}{2}}} + \frac{rw^{2}x}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{3}{2}}} - \frac{rw^{2}}{(q^{2}x^{2} + w^{2}x^{2} - 2w^{2}x + w^{2})^{\frac{3}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!