本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{({e}^{(x - 1)} - {x}^{2})ln(x)}{x} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{{e}^{(x - 1)}ln(x)}{x} - xln(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{{e}^{(x - 1)}ln(x)}{x} - xln(x)\right)}{dx}\\=&\frac{-{e}^{(x - 1)}ln(x)}{x^{2}} + \frac{({e}^{(x - 1)}((1 + 0)ln(e) + \frac{(x - 1)(0)}{(e)}))ln(x)}{x} + \frac{{e}^{(x - 1)}}{x(x)} - ln(x) - \frac{x}{(x)}\\=&\frac{-{e}^{(x - 1)}ln(x)}{x^{2}} + \frac{{e}^{(x - 1)}ln(x)}{x} + \frac{{e}^{(x - 1)}}{x^{2}} - ln(x) - 1\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-{e}^{(x - 1)}ln(x)}{x^{2}} + \frac{{e}^{(x - 1)}ln(x)}{x} + \frac{{e}^{(x - 1)}}{x^{2}} - ln(x) - 1\right)}{dx}\\=&\frac{--2{e}^{(x - 1)}ln(x)}{x^{3}} - \frac{({e}^{(x - 1)}((1 + 0)ln(e) + \frac{(x - 1)(0)}{(e)}))ln(x)}{x^{2}} - \frac{{e}^{(x - 1)}}{x^{2}(x)} + \frac{-{e}^{(x - 1)}ln(x)}{x^{2}} + \frac{({e}^{(x - 1)}((1 + 0)ln(e) + \frac{(x - 1)(0)}{(e)}))ln(x)}{x} + \frac{{e}^{(x - 1)}}{x(x)} + \frac{-2{e}^{(x - 1)}}{x^{3}} + \frac{({e}^{(x - 1)}((1 + 0)ln(e) + \frac{(x - 1)(0)}{(e)}))}{x^{2}} - \frac{1}{(x)} + 0\\=&\frac{2{e}^{(x - 1)}ln(x)}{x^{3}} - \frac{2{e}^{(x - 1)}ln(x)}{x^{2}} + \frac{{e}^{(x - 1)}ln(x)}{x} - \frac{3{e}^{(x - 1)}}{x^{3}} + \frac{2{e}^{(x - 1)}}{x^{2}} - \frac{1}{x}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!