本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数e^{{2}^{(x - 1)}} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( e^{{2}^{(x - 1)}}\right)}{dx}\\=&e^{{2}^{(x - 1)}}({2}^{(x - 1)}((1 + 0)ln(2) + \frac{(x - 1)(0)}{(2)}))\\=&{2}^{(x - 1)}e^{{2}^{(x - 1)}}ln(2)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( {2}^{(x - 1)}e^{{2}^{(x - 1)}}ln(2)\right)}{dx}\\=&({2}^{(x - 1)}((1 + 0)ln(2) + \frac{(x - 1)(0)}{(2)}))e^{{2}^{(x - 1)}}ln(2) + {2}^{(x - 1)}e^{{2}^{(x - 1)}}({2}^{(x - 1)}((1 + 0)ln(2) + \frac{(x - 1)(0)}{(2)}))ln(2) + \frac{{2}^{(x - 1)}e^{{2}^{(x - 1)}}*0}{(2)}\\=&{2}^{(x - 1)}e^{{2}^{(x - 1)}}ln^{2}(2) + {2}^{(2x - 2)}e^{{2}^{(x - 1)}}ln^{2}(2)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( {2}^{(x - 1)}e^{{2}^{(x - 1)}}ln^{2}(2) + {2}^{(2x - 2)}e^{{2}^{(x - 1)}}ln^{2}(2)\right)}{dx}\\=&({2}^{(x - 1)}((1 + 0)ln(2) + \frac{(x - 1)(0)}{(2)}))e^{{2}^{(x - 1)}}ln^{2}(2) + {2}^{(x - 1)}e^{{2}^{(x - 1)}}({2}^{(x - 1)}((1 + 0)ln(2) + \frac{(x - 1)(0)}{(2)}))ln^{2}(2) + \frac{{2}^{(x - 1)}e^{{2}^{(x - 1)}}*2ln(2)*0}{(2)} + ({2}^{(2x - 2)}((2 + 0)ln(2) + \frac{(2x - 2)(0)}{(2)}))e^{{2}^{(x - 1)}}ln^{2}(2) + {2}^{(2x - 2)}e^{{2}^{(x - 1)}}({2}^{(x - 1)}((1 + 0)ln(2) + \frac{(x - 1)(0)}{(2)}))ln^{2}(2) + \frac{{2}^{(2x - 2)}e^{{2}^{(x - 1)}}*2ln(2)*0}{(2)}\\=&{2}^{(x - 1)}e^{{2}^{(x - 1)}}ln^{3}(2) + 4 * {2}^{(2x - 2)}e^{{2}^{(x - 1)}}ln^{3}(2)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( {2}^{(x - 1)}e^{{2}^{(x - 1)}}ln^{3}(2) + 4 * {2}^{(2x - 2)}e^{{2}^{(x - 1)}}ln^{3}(2)\right)}{dx}\\=&({2}^{(x - 1)}((1 + 0)ln(2) + \frac{(x - 1)(0)}{(2)}))e^{{2}^{(x - 1)}}ln^{3}(2) + {2}^{(x - 1)}e^{{2}^{(x - 1)}}({2}^{(x - 1)}((1 + 0)ln(2) + \frac{(x - 1)(0)}{(2)}))ln^{3}(2) + \frac{{2}^{(x - 1)}e^{{2}^{(x - 1)}}*3ln^{2}(2)*0}{(2)} + 4({2}^{(2x - 2)}((2 + 0)ln(2) + \frac{(2x - 2)(0)}{(2)}))e^{{2}^{(x - 1)}}ln^{3}(2) + 4 * {2}^{(2x - 2)}e^{{2}^{(x - 1)}}({2}^{(x - 1)}((1 + 0)ln(2) + \frac{(x - 1)(0)}{(2)}))ln^{3}(2) + \frac{4 * {2}^{(2x - 2)}e^{{2}^{(x - 1)}}*3ln^{2}(2)*0}{(2)}\\=&{2}^{(x - 1)}e^{{2}^{(x - 1)}}ln^{4}(2) + 13 * {2}^{(2x - 2)}e^{{2}^{(x - 1)}}ln^{4}(2)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!