本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(1 - 4x)}{(1 + 4x)} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - \frac{4x}{(4x + 1)} + \frac{1}{(4x + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( - \frac{4x}{(4x + 1)} + \frac{1}{(4x + 1)}\right)}{dx}\\=& - 4(\frac{-(4 + 0)}{(4x + 1)^{2}})x - \frac{4}{(4x + 1)} + (\frac{-(4 + 0)}{(4x + 1)^{2}})\\=&\frac{16x}{(4x + 1)^{2}} - \frac{4}{(4x + 1)^{2}} - \frac{4}{(4x + 1)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{16x}{(4x + 1)^{2}} - \frac{4}{(4x + 1)^{2}} - \frac{4}{(4x + 1)}\right)}{dx}\\=&16(\frac{-2(4 + 0)}{(4x + 1)^{3}})x + \frac{16}{(4x + 1)^{2}} - 4(\frac{-2(4 + 0)}{(4x + 1)^{3}}) - 4(\frac{-(4 + 0)}{(4x + 1)^{2}})\\=& - \frac{128x}{(4x + 1)^{3}} + \frac{32}{(4x + 1)^{3}} + \frac{32}{(4x + 1)^{2}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( - \frac{128x}{(4x + 1)^{3}} + \frac{32}{(4x + 1)^{3}} + \frac{32}{(4x + 1)^{2}}\right)}{dx}\\=& - 128(\frac{-3(4 + 0)}{(4x + 1)^{4}})x - \frac{128}{(4x + 1)^{3}} + 32(\frac{-3(4 + 0)}{(4x + 1)^{4}}) + 32(\frac{-2(4 + 0)}{(4x + 1)^{3}})\\=&\frac{1536x}{(4x + 1)^{4}} - \frac{384}{(4x + 1)^{4}} - \frac{384}{(4x + 1)^{3}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{1536x}{(4x + 1)^{4}} - \frac{384}{(4x + 1)^{4}} - \frac{384}{(4x + 1)^{3}}\right)}{dx}\\=&1536(\frac{-4(4 + 0)}{(4x + 1)^{5}})x + \frac{1536}{(4x + 1)^{4}} - 384(\frac{-4(4 + 0)}{(4x + 1)^{5}}) - 384(\frac{-3(4 + 0)}{(4x + 1)^{4}})\\=& - \frac{24576x}{(4x + 1)^{5}} + \frac{6144}{(4x + 1)^{5}} + \frac{6144}{(4x + 1)^{4}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!