本次共计算 1 个题目:每一题对 R 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{R}^{r} 关于 R 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {R}^{r}\right)}{dR}\\=&({R}^{r}((0)ln(R) + \frac{(r)(1)}{(R)}))\\=&\frac{r{R}^{r}}{R}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{r{R}^{r}}{R}\right)}{dR}\\=&\frac{r*-{R}^{r}}{R^{2}} + \frac{r({R}^{r}((0)ln(R) + \frac{(r)(1)}{(R)}))}{R}\\=&\frac{-r{R}^{r}}{R^{2}} + \frac{r^{2}{R}^{r}}{R^{2}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-r{R}^{r}}{R^{2}} + \frac{r^{2}{R}^{r}}{R^{2}}\right)}{dR}\\=&\frac{-r*-2{R}^{r}}{R^{3}} - \frac{r({R}^{r}((0)ln(R) + \frac{(r)(1)}{(R)}))}{R^{2}} + \frac{r^{2}*-2{R}^{r}}{R^{3}} + \frac{r^{2}({R}^{r}((0)ln(R) + \frac{(r)(1)}{(R)}))}{R^{2}}\\=&\frac{2r{R}^{r}}{R^{3}} - \frac{3r^{2}{R}^{r}}{R^{3}} + \frac{r^{3}{R}^{r}}{R^{3}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{2r{R}^{r}}{R^{3}} - \frac{3r^{2}{R}^{r}}{R^{3}} + \frac{r^{3}{R}^{r}}{R^{3}}\right)}{dR}\\=&\frac{2r*-3{R}^{r}}{R^{4}} + \frac{2r({R}^{r}((0)ln(R) + \frac{(r)(1)}{(R)}))}{R^{3}} - \frac{3r^{2}*-3{R}^{r}}{R^{4}} - \frac{3r^{2}({R}^{r}((0)ln(R) + \frac{(r)(1)}{(R)}))}{R^{3}} + \frac{r^{3}*-3{R}^{r}}{R^{4}} + \frac{r^{3}({R}^{r}((0)ln(R) + \frac{(r)(1)}{(R)}))}{R^{3}}\\=&\frac{-6r{R}^{r}}{R^{4}} + \frac{11r^{2}{R}^{r}}{R^{4}} - \frac{6r^{3}{R}^{r}}{R^{4}} + \frac{r^{4}{R}^{r}}{R^{4}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!