本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数3sin(2x + 1 + 8lg(2x + 1)) + \frac{(24sin(2x + 1 + 8lg(2x + 1)))}{(ln(10)(2x + 1))} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 3sin(2x + 8lg(2x + 1) + 1) + \frac{24sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 3sin(2x + 8lg(2x + 1) + 1) + \frac{24sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))}\right)}{dx}\\=&3cos(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0) + 24(\frac{-(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{2}})sin(2x + 8lg(2x + 1) + 1) + \frac{24cos(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2xln(10) + ln(10))}\\=&6cos(2x + 8lg(2x + 1) + 1) + \frac{48cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)ln{10}} - \frac{48ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}} + \frac{48cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))} + \frac{384cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)(2xln(10) + ln(10))ln{10}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 6cos(2x + 8lg(2x + 1) + 1) + \frac{48cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)ln{10}} - \frac{48ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}} + \frac{48cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))} + \frac{384cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)(2xln(10) + ln(10))ln{10}}\right)}{dx}\\=&6*-sin(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0) + \frac{48(\frac{-(2 + 0)}{(2x + 1)^{2}})cos(2x + 8lg(2x + 1) + 1)}{ln{10}} + \frac{48*-0cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)ln^{2}{10}} + \frac{48*-sin(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2x + 1)ln{10}} - 48(\frac{-2(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{3}})ln(10)sin(2x + 8lg(2x + 1) + 1) - \frac{48*0sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(10)} - \frac{48ln(10)cos(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2xln(10) + ln(10))^{2}} + 48(\frac{-(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{2}})cos(2x + 8lg(2x + 1) + 1) + \frac{48*-sin(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2xln(10) + ln(10))} + \frac{384(\frac{-(2 + 0)}{(2x + 1)^{2}})cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))ln{10}} + \frac{384(\frac{-(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{2}})cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)ln{10}} + \frac{384*-0cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)(2xln(10) + ln(10))ln^{2}{10}} + \frac{384*-sin(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2x + 1)(2xln(10) + ln(10))ln{10}}\\=&-12sin(2x + 8lg(2x + 1) + 1) - \frac{192sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)ln{10}} - \frac{96cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}ln{10}} - \frac{768sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}ln^{2}{10}} + \frac{192ln^{2}(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{3}} - \frac{192ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}} - \frac{768ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)(2xln(10) + ln(10))^{2}ln{10}} - \frac{96sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))} - \frac{1536sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)(2xln(10) + ln(10))ln{10}} - \frac{768cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}(2xln(10) + ln(10))ln{10}} - \frac{768ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)ln{10}} - \frac{6144sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))(2x + 1)^{2}ln^{2}{10}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( -12sin(2x + 8lg(2x + 1) + 1) - \frac{192sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)ln{10}} - \frac{96cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}ln{10}} - \frac{768sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}ln^{2}{10}} + \frac{192ln^{2}(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{3}} - \frac{192ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}} - \frac{768ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)(2xln(10) + ln(10))^{2}ln{10}} - \frac{96sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))} - \frac{1536sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)(2xln(10) + ln(10))ln{10}} - \frac{768cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}(2xln(10) + ln(10))ln{10}} - \frac{768ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)ln{10}} - \frac{6144sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))(2x + 1)^{2}ln^{2}{10}}\right)}{dx}\\=&-12cos(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0) - \frac{192(\frac{-(2 + 0)}{(2x + 1)^{2}})sin(2x + 8lg(2x + 1) + 1)}{ln{10}} - \frac{192*-0sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)ln^{2}{10}} - \frac{192cos(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2x + 1)ln{10}} - \frac{96(\frac{-2(2 + 0)}{(2x + 1)^{3}})cos(2x + 8lg(2x + 1) + 1)}{ln{10}} - \frac{96*-0cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}ln^{2}{10}} - \frac{96*-sin(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2x + 1)^{2}ln{10}} - \frac{768(\frac{-2(2 + 0)}{(2x + 1)^{3}})sin(2x + 8lg(2x + 1) + 1)}{ln^{2}{10}} - \frac{768*-2*0sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}ln^{3}{10}} - \frac{768cos(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2x + 1)^{2}ln^{2}{10}} + 192(\frac{-3(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{4}})ln^{2}(10)sin(2x + 8lg(2x + 1) + 1) + \frac{192*2ln(10)*0sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{3}(10)} + \frac{192ln^{2}(10)cos(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2xln(10) + ln(10))^{3}} - 192(\frac{-2(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{3}})ln(10)cos(2x + 8lg(2x + 1) + 1) - \frac{192*0cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(10)} - \frac{192ln(10)*-sin(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2xln(10) + ln(10))^{2}} - \frac{768(\frac{-(2 + 0)}{(2x + 1)^{2}})ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}ln{10}} - \frac{768(\frac{-2(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{3}})ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)ln{10}} - \frac{768*0cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)(2xln(10) + ln(10))^{2}(10)ln{10}} - \frac{768ln(10)*-0cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)(2xln(10) + ln(10))^{2}ln^{2}{10}} - \frac{768ln(10)*-sin(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2x + 1)(2xln(10) + ln(10))^{2}ln{10}} - 96(\frac{-(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{2}})sin(2x + 8lg(2x + 1) + 1) - \frac{96cos(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2xln(10) + ln(10))} - \frac{1536(\frac{-(2 + 0)}{(2x + 1)^{2}})sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))ln{10}} - \frac{1536(\frac{-(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{2}})sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)ln{10}} - \frac{1536*-0sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)(2xln(10) + ln(10))ln^{2}{10}} - \frac{1536cos(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2x + 1)(2xln(10) + ln(10))ln{10}} - \frac{768(\frac{-2(2 + 0)}{(2x + 1)^{3}})cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))ln{10}} - \frac{768(\frac{-(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{2}})cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}ln{10}} - \frac{768*-0cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}(2xln(10) + ln(10))ln^{2}{10}} - \frac{768*-sin(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2x + 1)^{2}(2xln(10) + ln(10))ln{10}} - \frac{768(\frac{-2(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{3}})ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)ln{10}} - \frac{768(\frac{-(2 + 0)}{(2x + 1)^{2}})ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}ln{10}} - \frac{768*0cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)(10)ln{10}} - \frac{768ln(10)*-0cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)ln^{2}{10}} - \frac{768ln(10)*-sin(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2xln(10) + ln(10))^{2}(2x + 1)ln{10}} - \frac{6144(\frac{-(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{2}})sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}ln^{2}{10}} - \frac{6144(\frac{-2(2 + 0)}{(2x + 1)^{3}})sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))ln^{2}{10}} - \frac{6144*-2*0sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))(2x + 1)^{2}ln^{3}{10}} - \frac{6144cos(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2xln(10) + ln(10))(2x + 1)^{2}ln^{2}{10}}\\=&-24cos(2x + 8lg(2x + 1) + 1) - \frac{576cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)ln{10}} + \frac{576sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}ln{10}} - \frac{4608cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}ln^{2}{10}} + \frac{384cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}ln{10}} + \frac{4608sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}ln^{2}{10}} - \frac{12288cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}ln^{3}{10}} - \frac{1152ln^{3}(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{4}} + \frac{1152ln^{2}(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{3}} + \frac{3072ln^{2}(10)cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)(2xln(10) + ln(10))^{3}ln{10}} + \frac{576ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}} + \frac{4608ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)(2xln(10) + ln(10))^{2}ln{10}} + \frac{3072ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}(2xln(10) + ln(10))^{2}ln{10}} + \frac{6144ln^{2}(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{3}(2x + 1)ln{10}} + \frac{12288ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)^{2}ln^{2}{10}} - \frac{192cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))} - \frac{1536cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)(2xln(10) + ln(10))ln{10}} + \frac{4608sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}(2xln(10) + ln(10))ln{10}} + \frac{4608ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)ln{10}} - \frac{3072cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))(2x + 1)ln{10}} - \frac{36864cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}(2xln(10) + ln(10))ln^{2}{10}} + \frac{3072cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}(2xln(10) + ln(10))ln{10}} + \frac{12288sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))(2x + 1)^{3}ln^{2}{10}} + \frac{1536ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)^{2}ln{10}} + \frac{12288ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}(2xln(10) + ln(10))^{2}ln^{2}{10}} + \frac{12288ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)^{2}ln^{2}{10}} + \frac{24576sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}(2xln(10) + ln(10))ln^{2}{10}} - \frac{98304cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))(2x + 1)^{3}ln^{3}{10}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( -24cos(2x + 8lg(2x + 1) + 1) - \frac{576cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)ln{10}} + \frac{576sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}ln{10}} - \frac{4608cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}ln^{2}{10}} + \frac{384cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}ln{10}} + \frac{4608sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}ln^{2}{10}} - \frac{12288cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}ln^{3}{10}} - \frac{1152ln^{3}(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{4}} + \frac{1152ln^{2}(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{3}} + \frac{3072ln^{2}(10)cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)(2xln(10) + ln(10))^{3}ln{10}} + \frac{576ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}} + \frac{4608ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)(2xln(10) + ln(10))^{2}ln{10}} + \frac{3072ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}(2xln(10) + ln(10))^{2}ln{10}} + \frac{6144ln^{2}(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{3}(2x + 1)ln{10}} + \frac{12288ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)^{2}ln^{2}{10}} - \frac{192cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))} - \frac{1536cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)(2xln(10) + ln(10))ln{10}} + \frac{4608sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}(2xln(10) + ln(10))ln{10}} + \frac{4608ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)ln{10}} - \frac{3072cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))(2x + 1)ln{10}} - \frac{36864cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}(2xln(10) + ln(10))ln^{2}{10}} + \frac{3072cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}(2xln(10) + ln(10))ln{10}} + \frac{12288sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))(2x + 1)^{3}ln^{2}{10}} + \frac{1536ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)^{2}ln{10}} + \frac{12288ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}(2xln(10) + ln(10))^{2}ln^{2}{10}} + \frac{12288ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)^{2}ln^{2}{10}} + \frac{24576sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}(2xln(10) + ln(10))ln^{2}{10}} - \frac{98304cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))(2x + 1)^{3}ln^{3}{10}}\right)}{dx}\\=&-24*-sin(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0) - \frac{576(\frac{-(2 + 0)}{(2x + 1)^{2}})cos(2x + 8lg(2x + 1) + 1)}{ln{10}} - \frac{576*-0cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)ln^{2}{10}} - \frac{576*-sin(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2x + 1)ln{10}} + \frac{576(\frac{-2(2 + 0)}{(2x + 1)^{3}})sin(2x + 8lg(2x + 1) + 1)}{ln{10}} + \frac{576*-0sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}ln^{2}{10}} + \frac{576cos(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2x + 1)^{2}ln{10}} - \frac{4608(\frac{-2(2 + 0)}{(2x + 1)^{3}})cos(2x + 8lg(2x + 1) + 1)}{ln^{2}{10}} - \frac{4608*-2*0cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}ln^{3}{10}} - \frac{4608*-sin(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2x + 1)^{2}ln^{2}{10}} + \frac{384(\frac{-3(2 + 0)}{(2x + 1)^{4}})cos(2x + 8lg(2x + 1) + 1)}{ln{10}} + \frac{384*-0cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}ln^{2}{10}} + \frac{384*-sin(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2x + 1)^{3}ln{10}} + \frac{4608(\frac{-3(2 + 0)}{(2x + 1)^{4}})sin(2x + 8lg(2x + 1) + 1)}{ln^{2}{10}} + \frac{4608*-2*0sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}ln^{3}{10}} + \frac{4608cos(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2x + 1)^{3}ln^{2}{10}} - \frac{12288(\frac{-3(2 + 0)}{(2x + 1)^{4}})cos(2x + 8lg(2x + 1) + 1)}{ln^{3}{10}} - \frac{12288*-3*0cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}ln^{4}{10}} - \frac{12288*-sin(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2x + 1)^{3}ln^{3}{10}} - 1152(\frac{-4(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{5}})ln^{3}(10)sin(2x + 8lg(2x + 1) + 1) - \frac{1152*3ln^{2}(10)*0sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{4}(10)} - \frac{1152ln^{3}(10)cos(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2xln(10) + ln(10))^{4}} + 1152(\frac{-3(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{4}})ln^{2}(10)cos(2x + 8lg(2x + 1) + 1) + \frac{1152*2ln(10)*0cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{3}(10)} + \frac{1152ln^{2}(10)*-sin(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2xln(10) + ln(10))^{3}} + \frac{3072(\frac{-(2 + 0)}{(2x + 1)^{2}})ln^{2}(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{3}ln{10}} + \frac{3072(\frac{-3(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{4}})ln^{2}(10)cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)ln{10}} + \frac{3072*2ln(10)*0cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)(2xln(10) + ln(10))^{3}(10)ln{10}} + \frac{3072ln^{2}(10)*-0cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)(2xln(10) + ln(10))^{3}ln^{2}{10}} + \frac{3072ln^{2}(10)*-sin(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2x + 1)(2xln(10) + ln(10))^{3}ln{10}} + 576(\frac{-2(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{3}})ln(10)sin(2x + 8lg(2x + 1) + 1) + \frac{576*0sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(10)} + \frac{576ln(10)cos(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2xln(10) + ln(10))^{2}} + \frac{4608(\frac{-(2 + 0)}{(2x + 1)^{2}})ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}ln{10}} + \frac{4608(\frac{-2(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{3}})ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)ln{10}} + \frac{4608*0sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)(2xln(10) + ln(10))^{2}(10)ln{10}} + \frac{4608ln(10)*-0sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)(2xln(10) + ln(10))^{2}ln^{2}{10}} + \frac{4608ln(10)cos(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2x + 1)(2xln(10) + ln(10))^{2}ln{10}} + \frac{3072(\frac{-2(2 + 0)}{(2x + 1)^{3}})ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}ln{10}} + \frac{3072(\frac{-2(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{3}})ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}ln{10}} + \frac{3072*0cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}(2xln(10) + ln(10))^{2}(10)ln{10}} + \frac{3072ln(10)*-0cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}(2xln(10) + ln(10))^{2}ln^{2}{10}} + \frac{3072ln(10)*-sin(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2x + 1)^{2}(2xln(10) + ln(10))^{2}ln{10}} + \frac{6144(\frac{-3(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{4}})ln^{2}(10)cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)ln{10}} + \frac{6144(\frac{-(2 + 0)}{(2x + 1)^{2}})ln^{2}(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{3}ln{10}} + \frac{6144*2ln(10)*0cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{3}(2x + 1)(10)ln{10}} + \frac{6144ln^{2}(10)*-0cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{3}(2x + 1)ln^{2}{10}} + \frac{6144ln^{2}(10)*-sin(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2xln(10) + ln(10))^{3}(2x + 1)ln{10}} + \frac{12288(\frac{-2(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{3}})ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}ln^{2}{10}} + \frac{12288(\frac{-2(2 + 0)}{(2x + 1)^{3}})ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}ln^{2}{10}} + \frac{12288*-2*0ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)^{2}ln^{3}{10}} + \frac{12288*0sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)^{2}ln^{2}{10}(10)} + \frac{12288ln(10)cos(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2xln(10) + ln(10))^{2}(2x + 1)^{2}ln^{2}{10}} - 192(\frac{-(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{2}})cos(2x + 8lg(2x + 1) + 1) - \frac{192*-sin(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2xln(10) + ln(10))} - \frac{1536(\frac{-(2 + 0)}{(2x + 1)^{2}})cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))ln{10}} - \frac{1536(\frac{-(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{2}})cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)ln{10}} - \frac{1536*-0cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)(2xln(10) + ln(10))ln^{2}{10}} - \frac{1536*-sin(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2x + 1)(2xln(10) + ln(10))ln{10}} + \frac{4608(\frac{-2(2 + 0)}{(2x + 1)^{3}})sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))ln{10}} + \frac{4608(\frac{-(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{2}})sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}ln{10}} + \frac{4608*-0sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}(2xln(10) + ln(10))ln^{2}{10}} + \frac{4608cos(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2x + 1)^{2}(2xln(10) + ln(10))ln{10}} + \frac{4608(\frac{-2(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{3}})ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)ln{10}} + \frac{4608(\frac{-(2 + 0)}{(2x + 1)^{2}})ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}ln{10}} + \frac{4608*0sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)(10)ln{10}} + \frac{4608ln(10)*-0sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)ln^{2}{10}} + \frac{4608ln(10)cos(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2xln(10) + ln(10))^{2}(2x + 1)ln{10}} - \frac{3072(\frac{-(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{2}})cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)ln{10}} - \frac{3072(\frac{-(2 + 0)}{(2x + 1)^{2}})cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))ln{10}} - \frac{3072*-0cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))(2x + 1)ln^{2}{10}} - \frac{3072*-sin(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2xln(10) + ln(10))(2x + 1)ln{10}} - \frac{36864(\frac{-2(2 + 0)}{(2x + 1)^{3}})cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))ln^{2}{10}} - \frac{36864(\frac{-(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{2}})cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}ln^{2}{10}} - \frac{36864*-2*0cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}(2xln(10) + ln(10))ln^{3}{10}} - \frac{36864*-sin(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2x + 1)^{2}(2xln(10) + ln(10))ln^{2}{10}} + \frac{3072(\frac{-3(2 + 0)}{(2x + 1)^{4}})cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))ln{10}} + \frac{3072(\frac{-(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{2}})cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}ln{10}} + \frac{3072*-0cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}(2xln(10) + ln(10))ln^{2}{10}} + \frac{3072*-sin(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2x + 1)^{3}(2xln(10) + ln(10))ln{10}} + \frac{12288(\frac{-(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{2}})sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}ln^{2}{10}} + \frac{12288(\frac{-3(2 + 0)}{(2x + 1)^{4}})sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))ln^{2}{10}} + \frac{12288*-2*0sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))(2x + 1)^{3}ln^{3}{10}} + \frac{12288cos(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2xln(10) + ln(10))(2x + 1)^{3}ln^{2}{10}} + \frac{1536(\frac{-2(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{3}})ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}ln{10}} + \frac{1536(\frac{-2(2 + 0)}{(2x + 1)^{3}})ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}ln{10}} + \frac{1536*0cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)^{2}(10)ln{10}} + \frac{1536ln(10)*-0cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)^{2}ln^{2}{10}} + \frac{1536ln(10)*-sin(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2xln(10) + ln(10))^{2}(2x + 1)^{2}ln{10}} + \frac{12288(\frac{-2(2 + 0)}{(2x + 1)^{3}})ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}ln^{2}{10}} + \frac{12288(\frac{-2(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{3}})ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}ln^{2}{10}} + \frac{12288*-2*0ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}(2xln(10) + ln(10))^{2}ln^{3}{10}} + \frac{12288*0sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}(2xln(10) + ln(10))^{2}ln^{2}{10}(10)} + \frac{12288ln(10)cos(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2x + 1)^{2}(2xln(10) + ln(10))^{2}ln^{2}{10}} + \frac{12288(\frac{-2(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{3}})ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}ln^{2}{10}} + \frac{12288(\frac{-2(2 + 0)}{(2x + 1)^{3}})ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}ln^{2}{10}} + \frac{12288*0sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)^{2}(10)ln^{2}{10}} + \frac{12288ln(10)*-2*0sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)^{2}ln^{3}{10}} + \frac{12288ln(10)cos(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2xln(10) + ln(10))^{2}(2x + 1)^{2}ln^{2}{10}} + \frac{24576(\frac{-3(2 + 0)}{(2x + 1)^{4}})sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))ln^{2}{10}} + \frac{24576(\frac{-(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{2}})sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}ln^{2}{10}} + \frac{24576*-2*0sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}(2xln(10) + ln(10))ln^{3}{10}} + \frac{24576cos(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2x + 1)^{3}(2xln(10) + ln(10))ln^{2}{10}} - \frac{98304(\frac{-(2ln(10) + \frac{2x*0}{(10)} + \frac{0}{(10)})}{(2xln(10) + ln(10))^{2}})cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}ln^{3}{10}} - \frac{98304(\frac{-3(2 + 0)}{(2x + 1)^{4}})cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))ln^{3}{10}} - \frac{98304*-3*0cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))(2x + 1)^{3}ln^{4}{10}} - \frac{98304*-sin(2x + 8lg(2x + 1) + 1)(2 + \frac{8(2 + 0)}{ln{10}(2x + 1)} + 0)}{(2xln(10) + ln(10))(2x + 1)^{3}ln^{3}{10}}\\=&48sin(2x + 8lg(2x + 1) + 1) + \frac{1536sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)ln{10}} + \frac{2304cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}ln{10}} + \frac{18432sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}ln^{2}{10}} - \frac{3072sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}ln{10}} + \frac{36864cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}ln^{2}{10}} + \frac{98304sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}ln^{3}{10}} - \frac{2304cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{4}ln{10}} - \frac{33792sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{4}ln^{2}{10}} + \frac{147456cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{4}ln^{3}{10}} + \frac{196608sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{4}ln^{4}{10}} + \frac{9216ln^{4}(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{5}} - \frac{9216ln^{3}(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{4}} - \frac{18432ln^{3}(10)cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)(2xln(10) + ln(10))^{4}ln{10}} - \frac{4608ln^{2}(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{3}} - \frac{24576ln^{2}(10)sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)(2xln(10) + ln(10))^{3}ln{10}} - \frac{18432ln^{2}(10)cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}(2xln(10) + ln(10))^{3}ln{10}} - \frac{55296ln^{3}(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{4}(2x + 1)ln{10}} - \frac{49152ln^{2}(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{3}(2x + 1)^{2}ln^{2}{10}} + \frac{1536ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}} + \frac{9216ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)(2xln(10) + ln(10))^{2}ln{10}} - \frac{24576ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}(2xln(10) + ln(10))^{2}ln{10}} - \frac{49152ln^{2}(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{3}(2x + 1)ln{10}} + \frac{9216ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)ln{10}} + \frac{98304ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}(2xln(10) + ln(10))^{2}ln^{2}{10}} - \frac{18432ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}(2xln(10) + ln(10))^{2}ln{10}} - \frac{98304ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)^{3}ln^{2}{10}} - \frac{18432ln^{2}(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{3}(2x + 1)^{2}ln{10}} - \frac{98304ln^{2}(10)sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}(2xln(10) + ln(10))^{3}ln^{2}{10}} - \frac{98304ln^{2}(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{3}(2x + 1)^{2}ln^{2}{10}} + \frac{98304ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}(2xln(10) + ln(10))^{2}ln^{2}{10}} + \frac{393216ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)^{3}ln^{3}{10}} + \frac{384sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))} + \frac{6144sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)(2xln(10) + ln(10))ln{10}} + \frac{9216cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}(2xln(10) + ln(10))ln{10}} + \frac{9216ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)ln{10}} + \frac{24576sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))(2x + 1)^{2}ln^{2}{10}} - \frac{24576sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}(2xln(10) + ln(10))ln{10}} + \frac{122880sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}(2xln(10) + ln(10))ln^{2}{10}} + \frac{9216cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))(2x + 1)^{2}ln{10}} + \frac{245760cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}(2xln(10) + ln(10))ln^{2}{10}} - \frac{12288ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)^{2}ln{10}} + \frac{9216ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)(2xln(10) + ln(10))^{2}ln{10}} + \frac{73728ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)^{2}ln^{2}{10}} + \frac{6144sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))(2x + 1)ln{10}} + \frac{786432sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))(2x + 1)^{3}ln^{3}{10}} - \frac{18432cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{4}(2xln(10) + ln(10))ln{10}} - \frac{49152sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))(2x + 1)^{4}ln^{2}{10}} - \frac{73728ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)^{3}ln^{2}{10}} - \frac{221184sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{4}(2xln(10) + ln(10))ln^{2}{10}} + \frac{196608cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))(2x + 1)^{4}ln^{3}{10}} - \frac{6144ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)^{3}ln{10}} - \frac{73728ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}(2xln(10) + ln(10))^{2}ln^{2}{10}} - \frac{49152ln^{2}(10)sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{2}(2xln(10) + ln(10))^{3}ln^{2}{10}} + \frac{24576ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)^{2}ln^{2}{10}} + \frac{196608ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}(2xln(10) + ln(10))^{2}ln^{3}{10}} - \frac{49152ln(10)sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{3}(2xln(10) + ln(10))^{2}ln^{2}{10}} + \frac{49152cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))(2x + 1)^{3}ln^{2}{10}} + \frac{983040cos(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{4}(2xln(10) + ln(10))ln^{3}{10}} + \frac{196608ln(10)cos(2x + 8lg(2x + 1) + 1)}{(2xln(10) + ln(10))^{2}(2x + 1)^{3}ln^{3}{10}} + \frac{1572864sin(2x + 8lg(2x + 1) + 1)}{(2x + 1)^{4}(2xln(10) + ln(10))ln^{4}{10}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!