数学
         
语言:中文    Language:English
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案

    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数{a}^{{x}^{x}} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {a}^{{x}^{x}}\right)}{dx}\\=&({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))\\=&{x}^{x}{a}^{{x}^{x}}ln(a)ln(x) + {x}^{x}{a}^{{x}^{x}}ln(a)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( {x}^{x}{a}^{{x}^{x}}ln(a)ln(x) + {x}^{x}{a}^{{x}^{x}}ln(a)\right)}{dx}\\=&({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})){a}^{{x}^{x}}ln(a)ln(x) + {x}^{x}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln(a)ln(x) + \frac{{x}^{x}{a}^{{x}^{x}}*0ln(x)}{(a)} + \frac{{x}^{x}{a}^{{x}^{x}}ln(a)}{(x)} + ({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})){a}^{{x}^{x}}ln(a) + {x}^{x}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln(a) + \frac{{x}^{x}{a}^{{x}^{x}}*0}{(a)}\\=&{x}^{x}{a}^{{x}^{x}}ln^{2}(x)ln(a) + {x}^{x}{a}^{{x}^{x}}ln(a)ln(x) + {x}^{(2x)}{a}^{{x}^{x}}ln^{2}(x)ln^{2}(a) + {x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)ln(x) + \frac{{a}^{{x}^{x}}{x}^{x}ln(a)}{x} + {x}^{x}{a}^{{x}^{x}}ln(x)ln(a) + {x}^{(2x)}{a}^{{x}^{x}}ln(x)ln^{2}(a) + {x}^{x}{a}^{{x}^{x}}ln(a) + {x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( {x}^{x}{a}^{{x}^{x}}ln^{2}(x)ln(a) + {x}^{x}{a}^{{x}^{x}}ln(a)ln(x) + {x}^{(2x)}{a}^{{x}^{x}}ln^{2}(x)ln^{2}(a) + {x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)ln(x) + \frac{{a}^{{x}^{x}}{x}^{x}ln(a)}{x} + {x}^{x}{a}^{{x}^{x}}ln(x)ln(a) + {x}^{(2x)}{a}^{{x}^{x}}ln(x)ln^{2}(a) + {x}^{x}{a}^{{x}^{x}}ln(a) + {x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)\right)}{dx}\\=&({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})){a}^{{x}^{x}}ln^{2}(x)ln(a) + {x}^{x}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln^{2}(x)ln(a) + \frac{{x}^{x}{a}^{{x}^{x}}*2ln(x)ln(a)}{(x)} + \frac{{x}^{x}{a}^{{x}^{x}}ln^{2}(x)*0}{(a)} + ({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})){a}^{{x}^{x}}ln(a)ln(x) + {x}^{x}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln(a)ln(x) + \frac{{x}^{x}{a}^{{x}^{x}}*0ln(x)}{(a)} + \frac{{x}^{x}{a}^{{x}^{x}}ln(a)}{(x)} + ({x}^{(2x)}((2)ln(x) + \frac{(2x)(1)}{(x)})){a}^{{x}^{x}}ln^{2}(x)ln^{2}(a) + {x}^{(2x)}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln^{2}(x)ln^{2}(a) + \frac{{x}^{(2x)}{a}^{{x}^{x}}*2ln(x)ln^{2}(a)}{(x)} + \frac{{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(x)*2ln(a)*0}{(a)} + ({x}^{(2x)}((2)ln(x) + \frac{(2x)(1)}{(x)})){a}^{{x}^{x}}ln^{2}(a)ln(x) + {x}^{(2x)}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln^{2}(a)ln(x) + \frac{{x}^{(2x)}{a}^{{x}^{x}}*2ln(a)*0ln(x)}{(a)} + \frac{{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)}{(x)} + \frac{-{a}^{{x}^{x}}{x}^{x}ln(a)}{x^{2}} + \frac{({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)})){x}^{x}ln(a)}{x} + \frac{{a}^{{x}^{x}}({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))ln(a)}{x} + \frac{{a}^{{x}^{x}}{x}^{x}*0}{x(a)} + ({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})){a}^{{x}^{x}}ln(x)ln(a) + {x}^{x}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln(x)ln(a) + \frac{{x}^{x}{a}^{{x}^{x}}ln(a)}{(x)} + \frac{{x}^{x}{a}^{{x}^{x}}ln(x)*0}{(a)} + ({x}^{(2x)}((2)ln(x) + \frac{(2x)(1)}{(x)})){a}^{{x}^{x}}ln(x)ln^{2}(a) + {x}^{(2x)}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln(x)ln^{2}(a) + \frac{{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)}{(x)} + \frac{{x}^{(2x)}{a}^{{x}^{x}}ln(x)*2ln(a)*0}{(a)} + ({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})){a}^{{x}^{x}}ln(a) + {x}^{x}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln(a) + \frac{{x}^{x}{a}^{{x}^{x}}*0}{(a)} + ({x}^{(2x)}((2)ln(x) + \frac{(2x)(1)}{(x)})){a}^{{x}^{x}}ln^{2}(a) + {x}^{(2x)}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln^{2}(a) + \frac{{x}^{(2x)}{a}^{{x}^{x}}*2ln(a)*0}{(a)}\\=&{x}^{x}{a}^{{x}^{x}}ln^{3}(x)ln(a) + 3{x}^{x}{a}^{{x}^{x}}ln^{2}(x)ln(a) + 3{x}^{(2x)}{a}^{{x}^{x}}ln^{3}(x)ln^{2}(a) + 8{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(x)ln^{2}(a) + \frac{3{x}^{x}{a}^{{x}^{x}}ln(x)ln(a)}{x} + {x}^{(3x)}{a}^{{x}^{x}}ln^{3}(x)ln^{3}(a) + 2{x}^{(3x)}{a}^{{x}^{x}}ln^{2}(x)ln^{3}(a) + \frac{2{x}^{(2x)}{a}^{{x}^{x}}ln(x)ln^{2}(a)}{x} + \frac{{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)ln(x)}{x} + {x}^{x}{a}^{{x}^{x}}ln(a)ln(x) + 4{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)ln(x) + 2{x}^{(3x)}{a}^{{x}^{x}}ln^{3}(a)ln(x) + \frac{2{a}^{{x}^{x}}{x}^{(2x)}ln^{2}(a)}{x} - \frac{{a}^{{x}^{x}}{x}^{x}ln(a)}{x^{2}} + \frac{2{a}^{{x}^{x}}{x}^{x}ln(a)}{x} + \frac{{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)}{x} + \frac{{x}^{x}{a}^{{x}^{x}}ln(a)}{x} + 2{x}^{x}{a}^{{x}^{x}}ln(x)ln(a) + {x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)ln^{2}(x) + 5{x}^{(2x)}{a}^{{x}^{x}}ln(x)ln^{2}(a) + {x}^{(3x)}{a}^{{x}^{x}}ln^{3}(a)ln^{2}(x) + {x}^{(3x)}{a}^{{x}^{x}}ln(x)ln^{3}(a) + {x}^{x}{a}^{{x}^{x}}ln(a) + 3{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a) + {x}^{(3x)}{a}^{{x}^{x}}ln^{3}(a)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( {x}^{x}{a}^{{x}^{x}}ln^{3}(x)ln(a) + 3{x}^{x}{a}^{{x}^{x}}ln^{2}(x)ln(a) + 3{x}^{(2x)}{a}^{{x}^{x}}ln^{3}(x)ln^{2}(a) + 8{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(x)ln^{2}(a) + \frac{3{x}^{x}{a}^{{x}^{x}}ln(x)ln(a)}{x} + {x}^{(3x)}{a}^{{x}^{x}}ln^{3}(x)ln^{3}(a) + 2{x}^{(3x)}{a}^{{x}^{x}}ln^{2}(x)ln^{3}(a) + \frac{2{x}^{(2x)}{a}^{{x}^{x}}ln(x)ln^{2}(a)}{x} + \frac{{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)ln(x)}{x} + {x}^{x}{a}^{{x}^{x}}ln(a)ln(x) + 4{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)ln(x) + 2{x}^{(3x)}{a}^{{x}^{x}}ln^{3}(a)ln(x) + \frac{2{a}^{{x}^{x}}{x}^{(2x)}ln^{2}(a)}{x} - \frac{{a}^{{x}^{x}}{x}^{x}ln(a)}{x^{2}} + \frac{2{a}^{{x}^{x}}{x}^{x}ln(a)}{x} + \frac{{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)}{x} + \frac{{x}^{x}{a}^{{x}^{x}}ln(a)}{x} + 2{x}^{x}{a}^{{x}^{x}}ln(x)ln(a) + {x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)ln^{2}(x) + 5{x}^{(2x)}{a}^{{x}^{x}}ln(x)ln^{2}(a) + {x}^{(3x)}{a}^{{x}^{x}}ln^{3}(a)ln^{2}(x) + {x}^{(3x)}{a}^{{x}^{x}}ln(x)ln^{3}(a) + {x}^{x}{a}^{{x}^{x}}ln(a) + 3{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a) + {x}^{(3x)}{a}^{{x}^{x}}ln^{3}(a)\right)}{dx}\\=&({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})){a}^{{x}^{x}}ln^{3}(x)ln(a) + {x}^{x}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln^{3}(x)ln(a) + \frac{{x}^{x}{a}^{{x}^{x}}*3ln^{2}(x)ln(a)}{(x)} + \frac{{x}^{x}{a}^{{x}^{x}}ln^{3}(x)*0}{(a)} + 3({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})){a}^{{x}^{x}}ln^{2}(x)ln(a) + 3{x}^{x}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln^{2}(x)ln(a) + \frac{3{x}^{x}{a}^{{x}^{x}}*2ln(x)ln(a)}{(x)} + \frac{3{x}^{x}{a}^{{x}^{x}}ln^{2}(x)*0}{(a)} + 3({x}^{(2x)}((2)ln(x) + \frac{(2x)(1)}{(x)})){a}^{{x}^{x}}ln^{3}(x)ln^{2}(a) + 3{x}^{(2x)}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln^{3}(x)ln^{2}(a) + \frac{3{x}^{(2x)}{a}^{{x}^{x}}*3ln^{2}(x)ln^{2}(a)}{(x)} + \frac{3{x}^{(2x)}{a}^{{x}^{x}}ln^{3}(x)*2ln(a)*0}{(a)} + 8({x}^{(2x)}((2)ln(x) + \frac{(2x)(1)}{(x)})){a}^{{x}^{x}}ln^{2}(x)ln^{2}(a) + 8{x}^{(2x)}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln^{2}(x)ln^{2}(a) + \frac{8{x}^{(2x)}{a}^{{x}^{x}}*2ln(x)ln^{2}(a)}{(x)} + \frac{8{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(x)*2ln(a)*0}{(a)} + \frac{3*-{x}^{x}{a}^{{x}^{x}}ln(x)ln(a)}{x^{2}} + \frac{3({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})){a}^{{x}^{x}}ln(x)ln(a)}{x} + \frac{3{x}^{x}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln(x)ln(a)}{x} + \frac{3{x}^{x}{a}^{{x}^{x}}ln(a)}{x(x)} + \frac{3{x}^{x}{a}^{{x}^{x}}ln(x)*0}{x(a)} + ({x}^{(3x)}((3)ln(x) + \frac{(3x)(1)}{(x)})){a}^{{x}^{x}}ln^{3}(x)ln^{3}(a) + {x}^{(3x)}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln^{3}(x)ln^{3}(a) + \frac{{x}^{(3x)}{a}^{{x}^{x}}*3ln^{2}(x)ln^{3}(a)}{(x)} + \frac{{x}^{(3x)}{a}^{{x}^{x}}ln^{3}(x)*3ln^{2}(a)*0}{(a)} + 2({x}^{(3x)}((3)ln(x) + \frac{(3x)(1)}{(x)})){a}^{{x}^{x}}ln^{2}(x)ln^{3}(a) + 2{x}^{(3x)}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln^{2}(x)ln^{3}(a) + \frac{2{x}^{(3x)}{a}^{{x}^{x}}*2ln(x)ln^{3}(a)}{(x)} + \frac{2{x}^{(3x)}{a}^{{x}^{x}}ln^{2}(x)*3ln^{2}(a)*0}{(a)} + \frac{2*-{x}^{(2x)}{a}^{{x}^{x}}ln(x)ln^{2}(a)}{x^{2}} + \frac{2({x}^{(2x)}((2)ln(x) + \frac{(2x)(1)}{(x)})){a}^{{x}^{x}}ln(x)ln^{2}(a)}{x} + \frac{2{x}^{(2x)}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln(x)ln^{2}(a)}{x} + \frac{2{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)}{x(x)} + \frac{2{x}^{(2x)}{a}^{{x}^{x}}ln(x)*2ln(a)*0}{x(a)} + \frac{-{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)ln(x)}{x^{2}} + \frac{({x}^{(2x)}((2)ln(x) + \frac{(2x)(1)}{(x)})){a}^{{x}^{x}}ln^{2}(a)ln(x)}{x} + \frac{{x}^{(2x)}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln^{2}(a)ln(x)}{x} + \frac{{x}^{(2x)}{a}^{{x}^{x}}*2ln(a)*0ln(x)}{x(a)} + \frac{{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)}{x(x)} + ({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})){a}^{{x}^{x}}ln(a)ln(x) + {x}^{x}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln(a)ln(x) + \frac{{x}^{x}{a}^{{x}^{x}}*0ln(x)}{(a)} + \frac{{x}^{x}{a}^{{x}^{x}}ln(a)}{(x)} + 4({x}^{(2x)}((2)ln(x) + \frac{(2x)(1)}{(x)})){a}^{{x}^{x}}ln^{2}(a)ln(x) + 4{x}^{(2x)}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln^{2}(a)ln(x) + \frac{4{x}^{(2x)}{a}^{{x}^{x}}*2ln(a)*0ln(x)}{(a)} + \frac{4{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)}{(x)} + 2({x}^{(3x)}((3)ln(x) + \frac{(3x)(1)}{(x)})){a}^{{x}^{x}}ln^{3}(a)ln(x) + 2{x}^{(3x)}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln^{3}(a)ln(x) + \frac{2{x}^{(3x)}{a}^{{x}^{x}}*3ln^{2}(a)*0ln(x)}{(a)} + \frac{2{x}^{(3x)}{a}^{{x}^{x}}ln^{3}(a)}{(x)} + \frac{2*-{a}^{{x}^{x}}{x}^{(2x)}ln^{2}(a)}{x^{2}} + \frac{2({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)})){x}^{(2x)}ln^{2}(a)}{x} + \frac{2{a}^{{x}^{x}}({x}^{(2x)}((2)ln(x) + \frac{(2x)(1)}{(x)}))ln^{2}(a)}{x} + \frac{2{a}^{{x}^{x}}{x}^{(2x)}*2ln(a)*0}{x(a)} - \frac{-2{a}^{{x}^{x}}{x}^{x}ln(a)}{x^{3}} - \frac{({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)})){x}^{x}ln(a)}{x^{2}} - \frac{{a}^{{x}^{x}}({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))ln(a)}{x^{2}} - \frac{{a}^{{x}^{x}}{x}^{x}*0}{x^{2}(a)} + \frac{2*-{a}^{{x}^{x}}{x}^{x}ln(a)}{x^{2}} + \frac{2({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)})){x}^{x}ln(a)}{x} + \frac{2{a}^{{x}^{x}}({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))ln(a)}{x} + \frac{2{a}^{{x}^{x}}{x}^{x}*0}{x(a)} + \frac{-{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)}{x^{2}} + \frac{({x}^{(2x)}((2)ln(x) + \frac{(2x)(1)}{(x)})){a}^{{x}^{x}}ln^{2}(a)}{x} + \frac{{x}^{(2x)}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln^{2}(a)}{x} + \frac{{x}^{(2x)}{a}^{{x}^{x}}*2ln(a)*0}{x(a)} + \frac{-{x}^{x}{a}^{{x}^{x}}ln(a)}{x^{2}} + \frac{({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})){a}^{{x}^{x}}ln(a)}{x} + \frac{{x}^{x}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln(a)}{x} + \frac{{x}^{x}{a}^{{x}^{x}}*0}{x(a)} + 2({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})){a}^{{x}^{x}}ln(x)ln(a) + 2{x}^{x}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln(x)ln(a) + \frac{2{x}^{x}{a}^{{x}^{x}}ln(a)}{(x)} + \frac{2{x}^{x}{a}^{{x}^{x}}ln(x)*0}{(a)} + ({x}^{(2x)}((2)ln(x) + \frac{(2x)(1)}{(x)})){a}^{{x}^{x}}ln^{2}(a)ln^{2}(x) + {x}^{(2x)}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln^{2}(a)ln^{2}(x) + \frac{{x}^{(2x)}{a}^{{x}^{x}}*2ln(a)*0ln^{2}(x)}{(a)} + \frac{{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)*2ln(x)}{(x)} + 5({x}^{(2x)}((2)ln(x) + \frac{(2x)(1)}{(x)})){a}^{{x}^{x}}ln(x)ln^{2}(a) + 5{x}^{(2x)}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln(x)ln^{2}(a) + \frac{5{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)}{(x)} + \frac{5{x}^{(2x)}{a}^{{x}^{x}}ln(x)*2ln(a)*0}{(a)} + ({x}^{(3x)}((3)ln(x) + \frac{(3x)(1)}{(x)})){a}^{{x}^{x}}ln^{3}(a)ln^{2}(x) + {x}^{(3x)}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln^{3}(a)ln^{2}(x) + \frac{{x}^{(3x)}{a}^{{x}^{x}}*3ln^{2}(a)*0ln^{2}(x)}{(a)} + \frac{{x}^{(3x)}{a}^{{x}^{x}}ln^{3}(a)*2ln(x)}{(x)} + ({x}^{(3x)}((3)ln(x) + \frac{(3x)(1)}{(x)})){a}^{{x}^{x}}ln(x)ln^{3}(a) + {x}^{(3x)}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln(x)ln^{3}(a) + \frac{{x}^{(3x)}{a}^{{x}^{x}}ln^{3}(a)}{(x)} + \frac{{x}^{(3x)}{a}^{{x}^{x}}ln(x)*3ln^{2}(a)*0}{(a)} + ({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})){a}^{{x}^{x}}ln(a) + {x}^{x}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln(a) + \frac{{x}^{x}{a}^{{x}^{x}}*0}{(a)} + 3({x}^{(2x)}((2)ln(x) + \frac{(2x)(1)}{(x)})){a}^{{x}^{x}}ln^{2}(a) + 3{x}^{(2x)}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln^{2}(a) + \frac{3{x}^{(2x)}{a}^{{x}^{x}}*2ln(a)*0}{(a)} + ({x}^{(3x)}((3)ln(x) + \frac{(3x)(1)}{(x)})){a}^{{x}^{x}}ln^{3}(a) + {x}^{(3x)}({a}^{{x}^{x}}((({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))ln(a) + \frac{({x}^{x})(0)}{(a)}))ln^{3}(a) + \frac{{x}^{(3x)}{a}^{{x}^{x}}*3ln^{2}(a)*0}{(a)}\\=&{x}^{x}{a}^{{x}^{x}}ln^{4}(x)ln(a) + 4{x}^{x}{a}^{{x}^{x}}ln^{3}(x)ln(a) + 7{x}^{(2x)}{a}^{{x}^{x}}ln^{4}(x)ln^{2}(a) + 27{x}^{(2x)}{a}^{{x}^{x}}ln^{3}(x)ln^{2}(a) + \frac{6{x}^{x}{a}^{{x}^{x}}ln^{2}(x)ln(a)}{x} + 6{x}^{(3x)}{a}^{{x}^{x}}ln^{4}(x)ln^{3}(a) + 21{x}^{(3x)}{a}^{{x}^{x}}ln^{3}(x)ln^{3}(a) + \frac{12{x}^{x}{a}^{{x}^{x}}ln(x)ln(a)}{x} + {x}^{(4x)}{a}^{{x}^{x}}ln^{4}(x)ln^{4}(a) + 3{x}^{(4x)}{a}^{{x}^{x}}ln^{3}(x)ln^{4}(a) + \frac{15{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(x)ln^{2}(a)}{x} + 6{x}^{x}{a}^{{x}^{x}}ln^{2}(x)ln(a) + 37{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(x)ln^{2}(a) + 24{x}^{(3x)}{a}^{{x}^{x}}ln^{2}(x)ln^{3}(a) + \frac{28{x}^{(2x)}{a}^{{x}^{x}}ln(x)ln^{2}(a)}{x} - \frac{4{x}^{x}{a}^{{x}^{x}}ln(x)ln(a)}{x^{2}} + \frac{3{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)ln^{2}(x)}{x} + \frac{3{x}^{(3x)}{a}^{{x}^{x}}ln^{3}(a)ln^{2}(x)}{x} + \frac{3{x}^{(3x)}{a}^{{x}^{x}}ln^{2}(x)ln^{3}(a)}{x} + 3{x}^{(4x)}{a}^{{x}^{x}}ln^{2}(x)ln^{4}(a) + \frac{6{x}^{(3x)}{a}^{{x}^{x}}ln(x)ln^{3}(a)}{x} - \frac{2{x}^{(2x)}{a}^{{x}^{x}}ln(x)ln^{2}(a)}{x^{2}} - \frac{2{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)ln(x)}{x^{2}} + \frac{6{x}^{(3x)}{a}^{{x}^{x}}ln^{3}(a)ln(x)}{x} + \frac{8{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)ln(x)}{x} + \frac{{a}^{{x}^{x}}{x}^{x}ln(a)}{x^{2}} + \frac{3{a}^{{x}^{x}}{x}^{x}ln(a)}{x} + 11{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)ln(x) + 12{x}^{(3x)}{a}^{{x}^{x}}ln^{3}(a)ln^{2}(x) + 15{x}^{(3x)}{a}^{{x}^{x}}ln^{3}(a)ln(x) + \frac{9{a}^{{x}^{x}}{x}^{(2x)}ln^{2}(a)}{x} + {x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)ln^{3}(x) + 3{x}^{(4x)}{a}^{{x}^{x}}ln^{4}(a)ln(x) + \frac{3{a}^{{x}^{x}}{x}^{(3x)}ln^{3}(a)}{x} + \frac{{a}^{{x}^{x}}{x}^{(2x)}ln^{2}(a)}{x^{2}} + \frac{2{a}^{{x}^{x}}{x}^{x}ln(a)}{x^{3}} - \frac{2{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)}{x^{2}} - \frac{2{x}^{x}{a}^{{x}^{x}}ln(a)}{x^{2}} + \frac{3{x}^{(3x)}{a}^{{x}^{x}}ln^{3}(a)}{x} + \frac{9{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)}{x} + \frac{3{x}^{x}{a}^{{x}^{x}}ln(a)}{x} + 3{x}^{x}{a}^{{x}^{x}}ln(x)ln(a) + {x}^{(4x)}{a}^{{x}^{x}}ln^{4}(a)ln^{3}(x) + 5{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a)ln^{2}(x) + 3{x}^{(3x)}{a}^{{x}^{x}}ln^{3}(a)ln^{3}(x) + 17{x}^{(2x)}{a}^{{x}^{x}}ln(x)ln^{2}(a) + 3{x}^{(4x)}{a}^{{x}^{x}}ln^{4}(a)ln^{2}(x) + {x}^{x}{a}^{{x}^{x}}ln(a)ln(x) + 9{x}^{(3x)}{a}^{{x}^{x}}ln(x)ln^{3}(a) + {x}^{(4x)}{a}^{{x}^{x}}ln(x)ln^{4}(a) + 7{x}^{(2x)}{a}^{{x}^{x}}ln^{2}(a) + 6{x}^{(3x)}{a}^{{x}^{x}}ln^{3}(a) + {x}^{x}{a}^{{x}^{x}}ln(a) + {x}^{(4x)}{a}^{{x}^{x}}ln^{4}(a)\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。