本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数x{0}^{(-xx - 1)} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = x{0}^{(-x^{2} - 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( x{0}^{(-x^{2} - 1)}\right)}{dx}\\=&{0}^{(-x^{2} - 1)} + x({0}^{(-x^{2} - 1)}((-2x + 0)ln(0) + \frac{(-x^{2} - 1)(0)}{(0)}))\\=&{0}^{(-x^{2} - 1)} - 2x^{2}{0}^{(-x^{2} - 1)}ln(0)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( {0}^{(-x^{2} - 1)} - 2x^{2}{0}^{(-x^{2} - 1)}ln(0)\right)}{dx}\\=&({0}^{(-x^{2} - 1)}((-2x + 0)ln(0) + \frac{(-x^{2} - 1)(0)}{(0)})) - 2*2x{0}^{(-x^{2} - 1)}ln(0) - 2x^{2}({0}^{(-x^{2} - 1)}((-2x + 0)ln(0) + \frac{(-x^{2} - 1)(0)}{(0)}))ln(0) - \frac{2x^{2}{0}^{(-x^{2} - 1)}*0}{(0)}\\=&-6x{0}^{(-x^{2} - 1)}ln(0) + 4x^{3}{0}^{(-x^{2} - 1)}ln^{2}(0)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( -6x{0}^{(-x^{2} - 1)}ln(0) + 4x^{3}{0}^{(-x^{2} - 1)}ln^{2}(0)\right)}{dx}\\=&-6 * {0}^{(-x^{2} - 1)}ln(0) - 6x({0}^{(-x^{2} - 1)}((-2x + 0)ln(0) + \frac{(-x^{2} - 1)(0)}{(0)}))ln(0) - \frac{6x{0}^{(-x^{2} - 1)}*0}{(0)} + 4*3x^{2}{0}^{(-x^{2} - 1)}ln^{2}(0) + 4x^{3}({0}^{(-x^{2} - 1)}((-2x + 0)ln(0) + \frac{(-x^{2} - 1)(0)}{(0)}))ln^{2}(0) + \frac{4x^{3}{0}^{(-x^{2} - 1)}*2ln(0)*0}{(0)}\\=&-6 * {0}^{(-x^{2} - 1)}ln(0) + 24x^{2}{0}^{(-x^{2} - 1)}ln^{2}(0) - 8x^{4}{0}^{(-x^{2} - 1)}ln^{3}(0)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( -6 * {0}^{(-x^{2} - 1)}ln(0) + 24x^{2}{0}^{(-x^{2} - 1)}ln^{2}(0) - 8x^{4}{0}^{(-x^{2} - 1)}ln^{3}(0)\right)}{dx}\\=&-6({0}^{(-x^{2} - 1)}((-2x + 0)ln(0) + \frac{(-x^{2} - 1)(0)}{(0)}))ln(0) - \frac{6 * {0}^{(-x^{2} - 1)}*0}{(0)} + 24*2x{0}^{(-x^{2} - 1)}ln^{2}(0) + 24x^{2}({0}^{(-x^{2} - 1)}((-2x + 0)ln(0) + \frac{(-x^{2} - 1)(0)}{(0)}))ln^{2}(0) + \frac{24x^{2}{0}^{(-x^{2} - 1)}*2ln(0)*0}{(0)} - 8*4x^{3}{0}^{(-x^{2} - 1)}ln^{3}(0) - 8x^{4}({0}^{(-x^{2} - 1)}((-2x + 0)ln(0) + \frac{(-x^{2} - 1)(0)}{(0)}))ln^{3}(0) - \frac{8x^{4}{0}^{(-x^{2} - 1)}*3ln^{2}(0)*0}{(0)}\\=&60x{0}^{(-x^{2} - 1)}ln^{2}(0) - 80x^{3}{0}^{(-x^{2} - 1)}ln^{3}(0) + 16x^{5}{0}^{(-x^{2} - 1)}ln^{4}(0)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!