本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数e^{axx + bx + c} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = e^{ax^{2} + bx + c}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( e^{ax^{2} + bx + c}\right)}{dx}\\=&e^{ax^{2} + bx + c}(a*2x + b + 0)\\=&2axe^{ax^{2} + bx + c} + be^{ax^{2} + bx + c}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 2axe^{ax^{2} + bx + c} + be^{ax^{2} + bx + c}\right)}{dx}\\=&2ae^{ax^{2} + bx + c} + 2axe^{ax^{2} + bx + c}(a*2x + b + 0) + be^{ax^{2} + bx + c}(a*2x + b + 0)\\=&2ae^{ax^{2} + bx + c} + 4a^{2}x^{2}e^{ax^{2} + bx + c} + 4abxe^{ax^{2} + bx + c} + b^{2}e^{ax^{2} + bx + c}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 2ae^{ax^{2} + bx + c} + 4a^{2}x^{2}e^{ax^{2} + bx + c} + 4abxe^{ax^{2} + bx + c} + b^{2}e^{ax^{2} + bx + c}\right)}{dx}\\=&2ae^{ax^{2} + bx + c}(a*2x + b + 0) + 4a^{2}*2xe^{ax^{2} + bx + c} + 4a^{2}x^{2}e^{ax^{2} + bx + c}(a*2x + b + 0) + 4abe^{ax^{2} + bx + c} + 4abxe^{ax^{2} + bx + c}(a*2x + b + 0) + b^{2}e^{ax^{2} + bx + c}(a*2x + b + 0)\\=&12a^{2}xe^{ax^{2} + bx + c} + 6abe^{ax^{2} + bx + c} + 8a^{3}x^{3}e^{ax^{2} + bx + c} + 12a^{2}bx^{2}e^{ax^{2} + bx + c} + 6ab^{2}xe^{ax^{2} + bx + c} + b^{3}e^{ax^{2} + bx + c}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 12a^{2}xe^{ax^{2} + bx + c} + 6abe^{ax^{2} + bx + c} + 8a^{3}x^{3}e^{ax^{2} + bx + c} + 12a^{2}bx^{2}e^{ax^{2} + bx + c} + 6ab^{2}xe^{ax^{2} + bx + c} + b^{3}e^{ax^{2} + bx + c}\right)}{dx}\\=&12a^{2}e^{ax^{2} + bx + c} + 12a^{2}xe^{ax^{2} + bx + c}(a*2x + b + 0) + 6abe^{ax^{2} + bx + c}(a*2x + b + 0) + 8a^{3}*3x^{2}e^{ax^{2} + bx + c} + 8a^{3}x^{3}e^{ax^{2} + bx + c}(a*2x + b + 0) + 12a^{2}b*2xe^{ax^{2} + bx + c} + 12a^{2}bx^{2}e^{ax^{2} + bx + c}(a*2x + b + 0) + 6ab^{2}e^{ax^{2} + bx + c} + 6ab^{2}xe^{ax^{2} + bx + c}(a*2x + b + 0) + b^{3}e^{ax^{2} + bx + c}(a*2x + b + 0)\\=&12a^{2}e^{ax^{2} + bx + c} + 48a^{3}x^{2}e^{ax^{2} + bx + c} + 48a^{2}bxe^{ax^{2} + bx + c} + 12ab^{2}e^{ax^{2} + bx + c} + 16a^{4}x^{4}e^{ax^{2} + bx + c} + 32a^{3}bx^{3}e^{ax^{2} + bx + c} + 24a^{2}b^{2}x^{2}e^{ax^{2} + bx + c} + 8ab^{3}xe^{ax^{2} + bx + c} + b^{4}e^{ax^{2} + bx + c}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!