数学
         
语言:中文    Language:English
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案

    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数({a}^{x} - 1 - x){\frac{1}{x}}^{n} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {a}^{x}{\frac{1}{x}}^{n} - {\frac{1}{x}}^{n} - x{\frac{1}{x}}^{n}\right)}{dx}\\=&({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)})){\frac{1}{x}}^{n} + {a}^{x}({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})})) - ({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})})) - {\frac{1}{x}}^{n} - x({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})}))\\=&{a}^{x}{\frac{1}{x}}^{n}ln(a) - \frac{n{\frac{1}{x}}^{n}{a}^{x}}{x} + \frac{n{\frac{1}{x}}^{n}}{x} - {\frac{1}{x}}^{n} + n{\frac{1}{x}}^{n}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( {a}^{x}{\frac{1}{x}}^{n}ln(a) - \frac{n{\frac{1}{x}}^{n}{a}^{x}}{x} + \frac{n{\frac{1}{x}}^{n}}{x} - {\frac{1}{x}}^{n} + n{\frac{1}{x}}^{n}\right)}{dx}\\=&({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)})){\frac{1}{x}}^{n}ln(a) + {a}^{x}({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})}))ln(a) + \frac{{a}^{x}{\frac{1}{x}}^{n}*0}{(a)} - \frac{n*-{\frac{1}{x}}^{n}{a}^{x}}{x^{2}} - \frac{n({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})})){a}^{x}}{x} - \frac{n{\frac{1}{x}}^{n}({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))}{x} + \frac{n*-{\frac{1}{x}}^{n}}{x^{2}} + \frac{n({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})}))}{x} - ({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})})) + n({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})}))\\=&{a}^{x}{\frac{1}{x}}^{n}ln^{2}(a) - \frac{n{\frac{1}{x}}^{n}{a}^{x}ln(a)}{x} - \frac{n{a}^{x}{\frac{1}{x}}^{n}ln(a)}{x} + \frac{n^{2}{\frac{1}{x}}^{n}{a}^{x}}{x^{2}} + \frac{n{\frac{1}{x}}^{n}{a}^{x}}{x^{2}} - \frac{n{\frac{1}{x}}^{n}}{x^{2}} - \frac{n^{2}{\frac{1}{x}}^{n}}{x^{2}} + \frac{n{\frac{1}{x}}^{n}}{x} - \frac{n^{2}{\frac{1}{x}}^{n}}{x}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( {a}^{x}{\frac{1}{x}}^{n}ln^{2}(a) - \frac{n{\frac{1}{x}}^{n}{a}^{x}ln(a)}{x} - \frac{n{a}^{x}{\frac{1}{x}}^{n}ln(a)}{x} + \frac{n^{2}{\frac{1}{x}}^{n}{a}^{x}}{x^{2}} + \frac{n{\frac{1}{x}}^{n}{a}^{x}}{x^{2}} - \frac{n{\frac{1}{x}}^{n}}{x^{2}} - \frac{n^{2}{\frac{1}{x}}^{n}}{x^{2}} + \frac{n{\frac{1}{x}}^{n}}{x} - \frac{n^{2}{\frac{1}{x}}^{n}}{x}\right)}{dx}\\=&({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)})){\frac{1}{x}}^{n}ln^{2}(a) + {a}^{x}({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})}))ln^{2}(a) + \frac{{a}^{x}{\frac{1}{x}}^{n}*2ln(a)*0}{(a)} - \frac{n*-{\frac{1}{x}}^{n}{a}^{x}ln(a)}{x^{2}} - \frac{n({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})})){a}^{x}ln(a)}{x} - \frac{n{\frac{1}{x}}^{n}({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))ln(a)}{x} - \frac{n{\frac{1}{x}}^{n}{a}^{x}*0}{x(a)} - \frac{n*-{a}^{x}{\frac{1}{x}}^{n}ln(a)}{x^{2}} - \frac{n({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)})){\frac{1}{x}}^{n}ln(a)}{x} - \frac{n{a}^{x}({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})}))ln(a)}{x} - \frac{n{a}^{x}{\frac{1}{x}}^{n}*0}{x(a)} + \frac{n^{2}*-2{\frac{1}{x}}^{n}{a}^{x}}{x^{3}} + \frac{n^{2}({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})})){a}^{x}}{x^{2}} + \frac{n^{2}{\frac{1}{x}}^{n}({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))}{x^{2}} + \frac{n*-2{\frac{1}{x}}^{n}{a}^{x}}{x^{3}} + \frac{n({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})})){a}^{x}}{x^{2}} + \frac{n{\frac{1}{x}}^{n}({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))}{x^{2}} - \frac{n*-2{\frac{1}{x}}^{n}}{x^{3}} - \frac{n({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})}))}{x^{2}} - \frac{n^{2}*-2{\frac{1}{x}}^{n}}{x^{3}} - \frac{n^{2}({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})}))}{x^{2}} + \frac{n*-{\frac{1}{x}}^{n}}{x^{2}} + \frac{n({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})}))}{x} - \frac{n^{2}*-{\frac{1}{x}}^{n}}{x^{2}} - \frac{n^{2}({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})}))}{x}\\=&{a}^{x}{\frac{1}{x}}^{n}ln^{3}(a) + \frac{n{\frac{1}{x}}^{n}{a}^{x}ln(a)}{x^{2}} - \frac{2n{a}^{x}{\frac{1}{x}}^{n}ln^{2}(a)}{x} + \frac{2n^{2}{\frac{1}{x}}^{n}{a}^{x}ln(a)}{x^{2}} - \frac{n{\frac{1}{x}}^{n}{a}^{x}ln^{2}(a)}{x} + \frac{2n{a}^{x}{\frac{1}{x}}^{n}ln(a)}{x^{2}} + \frac{n^{2}{a}^{x}{\frac{1}{x}}^{n}ln(a)}{x^{2}} - \frac{n^{3}{\frac{1}{x}}^{n}{a}^{x}}{x^{3}} - \frac{3n^{2}{\frac{1}{x}}^{n}{a}^{x}}{x^{3}} - \frac{2n{\frac{1}{x}}^{n}{a}^{x}}{x^{3}} + \frac{2n{\frac{1}{x}}^{n}}{x^{3}} + \frac{3n^{2}{\frac{1}{x}}^{n}}{x^{3}} + \frac{n^{3}{\frac{1}{x}}^{n}}{x^{3}} - \frac{n{\frac{1}{x}}^{n}}{x^{2}} + \frac{n^{3}{\frac{1}{x}}^{n}}{x^{2}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( {a}^{x}{\frac{1}{x}}^{n}ln^{3}(a) + \frac{n{\frac{1}{x}}^{n}{a}^{x}ln(a)}{x^{2}} - \frac{2n{a}^{x}{\frac{1}{x}}^{n}ln^{2}(a)}{x} + \frac{2n^{2}{\frac{1}{x}}^{n}{a}^{x}ln(a)}{x^{2}} - \frac{n{\frac{1}{x}}^{n}{a}^{x}ln^{2}(a)}{x} + \frac{2n{a}^{x}{\frac{1}{x}}^{n}ln(a)}{x^{2}} + \frac{n^{2}{a}^{x}{\frac{1}{x}}^{n}ln(a)}{x^{2}} - \frac{n^{3}{\frac{1}{x}}^{n}{a}^{x}}{x^{3}} - \frac{3n^{2}{\frac{1}{x}}^{n}{a}^{x}}{x^{3}} - \frac{2n{\frac{1}{x}}^{n}{a}^{x}}{x^{3}} + \frac{2n{\frac{1}{x}}^{n}}{x^{3}} + \frac{3n^{2}{\frac{1}{x}}^{n}}{x^{3}} + \frac{n^{3}{\frac{1}{x}}^{n}}{x^{3}} - \frac{n{\frac{1}{x}}^{n}}{x^{2}} + \frac{n^{3}{\frac{1}{x}}^{n}}{x^{2}}\right)}{dx}\\=&({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)})){\frac{1}{x}}^{n}ln^{3}(a) + {a}^{x}({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})}))ln^{3}(a) + \frac{{a}^{x}{\frac{1}{x}}^{n}*3ln^{2}(a)*0}{(a)} + \frac{n*-2{\frac{1}{x}}^{n}{a}^{x}ln(a)}{x^{3}} + \frac{n({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})})){a}^{x}ln(a)}{x^{2}} + \frac{n{\frac{1}{x}}^{n}({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))ln(a)}{x^{2}} + \frac{n{\frac{1}{x}}^{n}{a}^{x}*0}{x^{2}(a)} - \frac{2n*-{a}^{x}{\frac{1}{x}}^{n}ln^{2}(a)}{x^{2}} - \frac{2n({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)})){\frac{1}{x}}^{n}ln^{2}(a)}{x} - \frac{2n{a}^{x}({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})}))ln^{2}(a)}{x} - \frac{2n{a}^{x}{\frac{1}{x}}^{n}*2ln(a)*0}{x(a)} + \frac{2n^{2}*-2{\frac{1}{x}}^{n}{a}^{x}ln(a)}{x^{3}} + \frac{2n^{2}({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})})){a}^{x}ln(a)}{x^{2}} + \frac{2n^{2}{\frac{1}{x}}^{n}({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))ln(a)}{x^{2}} + \frac{2n^{2}{\frac{1}{x}}^{n}{a}^{x}*0}{x^{2}(a)} - \frac{n*-{\frac{1}{x}}^{n}{a}^{x}ln^{2}(a)}{x^{2}} - \frac{n({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})})){a}^{x}ln^{2}(a)}{x} - \frac{n{\frac{1}{x}}^{n}({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))ln^{2}(a)}{x} - \frac{n{\frac{1}{x}}^{n}{a}^{x}*2ln(a)*0}{x(a)} + \frac{2n*-2{a}^{x}{\frac{1}{x}}^{n}ln(a)}{x^{3}} + \frac{2n({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)})){\frac{1}{x}}^{n}ln(a)}{x^{2}} + \frac{2n{a}^{x}({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})}))ln(a)}{x^{2}} + \frac{2n{a}^{x}{\frac{1}{x}}^{n}*0}{x^{2}(a)} + \frac{n^{2}*-2{a}^{x}{\frac{1}{x}}^{n}ln(a)}{x^{3}} + \frac{n^{2}({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)})){\frac{1}{x}}^{n}ln(a)}{x^{2}} + \frac{n^{2}{a}^{x}({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})}))ln(a)}{x^{2}} + \frac{n^{2}{a}^{x}{\frac{1}{x}}^{n}*0}{x^{2}(a)} - \frac{n^{3}*-3{\frac{1}{x}}^{n}{a}^{x}}{x^{4}} - \frac{n^{3}({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})})){a}^{x}}{x^{3}} - \frac{n^{3}{\frac{1}{x}}^{n}({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))}{x^{3}} - \frac{3n^{2}*-3{\frac{1}{x}}^{n}{a}^{x}}{x^{4}} - \frac{3n^{2}({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})})){a}^{x}}{x^{3}} - \frac{3n^{2}{\frac{1}{x}}^{n}({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))}{x^{3}} - \frac{2n*-3{\frac{1}{x}}^{n}{a}^{x}}{x^{4}} - \frac{2n({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})})){a}^{x}}{x^{3}} - \frac{2n{\frac{1}{x}}^{n}({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))}{x^{3}} + \frac{2n*-3{\frac{1}{x}}^{n}}{x^{4}} + \frac{2n({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})}))}{x^{3}} + \frac{3n^{2}*-3{\frac{1}{x}}^{n}}{x^{4}} + \frac{3n^{2}({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})}))}{x^{3}} + \frac{n^{3}*-3{\frac{1}{x}}^{n}}{x^{4}} + \frac{n^{3}({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})}))}{x^{3}} - \frac{n*-2{\frac{1}{x}}^{n}}{x^{3}} - \frac{n({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})}))}{x^{2}} + \frac{n^{3}*-2{\frac{1}{x}}^{n}}{x^{3}} + \frac{n^{3}({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})}))}{x^{2}}\\=&{a}^{x}{\frac{1}{x}}^{n}ln^{4}(a) - \frac{2n{\frac{1}{x}}^{n}{a}^{x}ln(a)}{x^{3}} + \frac{5n{a}^{x}{\frac{1}{x}}^{n}ln^{2}(a)}{x^{2}} - \frac{7n^{2}{\frac{1}{x}}^{n}{a}^{x}ln(a)}{x^{3}} - \frac{3n{a}^{x}{\frac{1}{x}}^{n}ln^{3}(a)}{x} + \frac{3n^{2}{\frac{1}{x}}^{n}{a}^{x}ln^{2}(a)}{x^{2}} + \frac{3n^{2}{a}^{x}{\frac{1}{x}}^{n}ln^{2}(a)}{x^{2}} - \frac{3n^{3}{\frac{1}{x}}^{n}{a}^{x}ln(a)}{x^{3}} - \frac{n{\frac{1}{x}}^{n}{a}^{x}ln^{3}(a)}{x} + \frac{n{\frac{1}{x}}^{n}{a}^{x}ln^{2}(a)}{x^{2}} - \frac{6n{a}^{x}{\frac{1}{x}}^{n}ln(a)}{x^{3}} - \frac{5n^{2}{a}^{x}{\frac{1}{x}}^{n}ln(a)}{x^{3}} - \frac{n^{3}{a}^{x}{\frac{1}{x}}^{n}ln(a)}{x^{3}} + \frac{n^{4}{\frac{1}{x}}^{n}{a}^{x}}{x^{4}} + \frac{6n^{3}{\frac{1}{x}}^{n}{a}^{x}}{x^{4}} + \frac{11n^{2}{\frac{1}{x}}^{n}{a}^{x}}{x^{4}} + \frac{6n{\frac{1}{x}}^{n}{a}^{x}}{x^{4}} - \frac{6n{\frac{1}{x}}^{n}}{x^{4}} - \frac{11n^{2}{\frac{1}{x}}^{n}}{x^{4}} - \frac{6n^{3}{\frac{1}{x}}^{n}}{x^{4}} - \frac{n^{4}{\frac{1}{x}}^{n}}{x^{4}} + \frac{2n{\frac{1}{x}}^{n}}{x^{3}} + \frac{n^{2}{\frac{1}{x}}^{n}}{x^{3}} - \frac{2n^{3}{\frac{1}{x}}^{n}}{x^{3}} - \frac{n^{4}{\frac{1}{x}}^{n}}{x^{3}}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。