数学
         
语言:中文    Language:English
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案

    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数({a}^{x} - 1 - x){\frac{1}{x}}^{2} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{{a}^{x}}{x^{2}} - \frac{1}{x} - \frac{1}{x^{2}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{{a}^{x}}{x^{2}} - \frac{1}{x} - \frac{1}{x^{2}}\right)}{dx}\\=&\frac{-2{a}^{x}}{x^{3}} + \frac{({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))}{x^{2}} - \frac{-1}{x^{2}} - \frac{-2}{x^{3}}\\=&\frac{{a}^{x}ln(a)}{x^{2}} - \frac{2{a}^{x}}{x^{3}} + \frac{1}{x^{2}} + \frac{2}{x^{3}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{{a}^{x}ln(a)}{x^{2}} - \frac{2{a}^{x}}{x^{3}} + \frac{1}{x^{2}} + \frac{2}{x^{3}}\right)}{dx}\\=&\frac{-2{a}^{x}ln(a)}{x^{3}} + \frac{({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))ln(a)}{x^{2}} + \frac{{a}^{x}*0}{x^{2}(a)} - \frac{2*-3{a}^{x}}{x^{4}} - \frac{2({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))}{x^{3}} + \frac{-2}{x^{3}} + \frac{2*-3}{x^{4}}\\=&\frac{-4{a}^{x}ln(a)}{x^{3}} + \frac{{a}^{x}ln^{2}(a)}{x^{2}} + \frac{6{a}^{x}}{x^{4}} - \frac{2}{x^{3}} - \frac{6}{x^{4}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-4{a}^{x}ln(a)}{x^{3}} + \frac{{a}^{x}ln^{2}(a)}{x^{2}} + \frac{6{a}^{x}}{x^{4}} - \frac{2}{x^{3}} - \frac{6}{x^{4}}\right)}{dx}\\=&\frac{-4*-3{a}^{x}ln(a)}{x^{4}} - \frac{4({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))ln(a)}{x^{3}} - \frac{4{a}^{x}*0}{x^{3}(a)} + \frac{-2{a}^{x}ln^{2}(a)}{x^{3}} + \frac{({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))ln^{2}(a)}{x^{2}} + \frac{{a}^{x}*2ln(a)*0}{x^{2}(a)} + \frac{6*-4{a}^{x}}{x^{5}} + \frac{6({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))}{x^{4}} - \frac{2*-3}{x^{4}} - \frac{6*-4}{x^{5}}\\=&\frac{18{a}^{x}ln(a)}{x^{4}} - \frac{6{a}^{x}ln^{2}(a)}{x^{3}} + \frac{{a}^{x}ln^{3}(a)}{x^{2}} - \frac{24{a}^{x}}{x^{5}} + \frac{6}{x^{4}} + \frac{24}{x^{5}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{18{a}^{x}ln(a)}{x^{4}} - \frac{6{a}^{x}ln^{2}(a)}{x^{3}} + \frac{{a}^{x}ln^{3}(a)}{x^{2}} - \frac{24{a}^{x}}{x^{5}} + \frac{6}{x^{4}} + \frac{24}{x^{5}}\right)}{dx}\\=&\frac{18*-4{a}^{x}ln(a)}{x^{5}} + \frac{18({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))ln(a)}{x^{4}} + \frac{18{a}^{x}*0}{x^{4}(a)} - \frac{6*-3{a}^{x}ln^{2}(a)}{x^{4}} - \frac{6({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))ln^{2}(a)}{x^{3}} - \frac{6{a}^{x}*2ln(a)*0}{x^{3}(a)} + \frac{-2{a}^{x}ln^{3}(a)}{x^{3}} + \frac{({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))ln^{3}(a)}{x^{2}} + \frac{{a}^{x}*3ln^{2}(a)*0}{x^{2}(a)} - \frac{24*-5{a}^{x}}{x^{6}} - \frac{24({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))}{x^{5}} + \frac{6*-4}{x^{5}} + \frac{24*-5}{x^{6}}\\=&\frac{-96{a}^{x}ln(a)}{x^{5}} + \frac{36{a}^{x}ln^{2}(a)}{x^{4}} - \frac{8{a}^{x}ln^{3}(a)}{x^{3}} + \frac{{a}^{x}ln^{4}(a)}{x^{2}} + \frac{120{a}^{x}}{x^{6}} - \frac{24}{x^{5}} - \frac{120}{x^{6}}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。