本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(sin(2x) - 4cos(x))sin(x)cos(x)}{2} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1}{2}sin(2x)sin(x)cos(x) - 2sin(x)cos^{2}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{2}sin(2x)sin(x)cos(x) - 2sin(x)cos^{2}(x)\right)}{dx}\\=&\frac{1}{2}cos(2x)*2sin(x)cos(x) + \frac{1}{2}sin(2x)cos(x)cos(x) + \frac{1}{2}sin(2x)sin(x)*-sin(x) - 2cos(x)cos^{2}(x) - 2sin(x)*-2cos(x)sin(x)\\=&sin(x)cos(2x)cos(x) + \frac{sin(2x)cos^{2}(x)}{2} - \frac{sin(2x)sin^{2}(x)}{2} - 2cos^{3}(x) + 4sin^{2}(x)cos(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!